Metagenomic analysis of viral communities in diseased Baikal sponge Lubomirskia baikalensis
- Authors: Butina T.V.1, Bukin Y.S.1,2, Khanaev I.V.1, Kravtsova L.S.1, Maikova O.O.1, Tupikin A.E.3, Kabilov M.R.3, Belikov S.I.1
-
Affiliations:
- Limnological Institute of the Russian Academy of Sciences
- Irkutsk National Research Technical University
- Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences
- Issue: No 1 (2019)
- Pages: 155-162
- Section: Articles
- URL: https://journal-vniispk.ru/2658-3518/article/view/283641
- DOI: https://doi.org/10.31951/2658-3518-2019-A-1-155
- ID: 283641
Cite item
Full Text
Abstract
Sponges are an ecologically important component of marine and freshwater bodies. Sponge community includes a variety of microorganisms: fungi, algae, archaea, bacteria and viruses. Despite active research in the field of aquatic virology, biodiversity and the role of viruses in sponges are poorly studied. The relevance of research in this area is also related to the worldwide problem of sponge diseases. The aim of this study was to elucidate the genetic diversity of viruses in the associated community of diseased endemic Baikal sponge Lubomirskia baikalensis using metagenomic analysis. As a result, we have shown for the first time a high genetic and taxonomic diversity of DNA viruses in the Baikal sponge community. Identified sequences belonged to 16 viral families that infect a wide range of organisms. Moreover, our analysis indicated the differences in viral communities of visually healthy and diseased branches of the sponge. The approach used in this study is promising for further studies of viral communities in sponges, obtaining more complete information about the taxonomic and functional diversity of viruses in holobionts and entire Lake Baikal, and identifying the role of viruses in sponge diseases.
Keywords
About the authors
T. V. Butina
Limnological Institute of the Russian Academy of Sciences
Author for correspondence.
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033Yu. S. Bukin
Limnological Institute of the Russian Academy of Sciences; Irkutsk National Research Technical University
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033; Lermontov Str., 83, Irkutsk, 664074I. V. Khanaev
Limnological Institute of the Russian Academy of Sciences
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033L. S. Kravtsova
Limnological Institute of the Russian Academy of Sciences
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033O. O. Maikova
Limnological Institute of the Russian Academy of Sciences
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033A. E. Tupikin
Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Lavrentiev Ave., 8, Novosibirsk, 630090M. R. Kabilov
Institute of Chemical Biology and Fundamental Medicine of the Russian Academy of Sciences
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Lavrentiev Ave., 8, Novosibirsk, 630090S. I. Belikov
Limnological Institute of the Russian Academy of Sciences
Email: tvbutina@mail.ru
Siberian Branch
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033References
- Albuquerque L., da Costa M.S. 2014. The family Idiomarinaceae. In: Rosenberg E., DeLong E.F., Lory S. et al. (Eds.), The Prokaryotes. Heidelberg, pp. 361–385. doi: 10.1007/978-3-642-38922-1_232
- Altschul S.F., Gish W., Miller W. et al. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. doi: 10.1016/S0022-2836(05)80360-2
- Batista D., Costa R., Carvalho A.P. et al. 2018. Environmental conditions affect activity and associated microorganisms of marine sponges. Marine Environmental Research 142: 59–68. doi: 10.1016/j.marenvres.2018.09.020
- Belikov S.I., Feranchuk S.I., Butina T.V. et al. 2018. Mass disease and mortality of Baikal sponges. Limnology and Freshwater Biology 1: 36–42. doi: 10.31951/2658-3518-2018-A-1-36
- Bell J.J. 2008. The functional roles of marine sponges. Estuarine, Coastal and Shelf Science 79: 341–353. doi: 10.1016/j.ecss.2008.05.002
- Bondarenko N.A., Logacheva N.F. 2017. Structural changes in phytoplankton of the littoral zone of Lake Baikal. Hydrobiological Journal 53: 16–24. doi: 10.1615/HydrobJ.v53.i2.20
- Bormotov A.E. 2012. What has happened to Baikal sponges? Science First Hand 32: 20–23.
- Butina T.V., Potapov S.A., Belykh O.I. et al. 2015. Genetic diversity of cyanophages of the myoviridae family as a constituent of the associated community of the Baikal sponge Lubomirskia baicalensis. Russian Journal of Genetics 51: 313–317. doi: 10.1134/S1022795415030011
- Claverie J.M., Grzela R., Lartigue A. et al. 2009. Mimivirus and Mimiviridae: giant viruses with an increasing number of potential hosts, including corals and sponges. Journal of Invertebrate Pathology 101: 172–180. doi: 10.1016/j.jip.2009.03.011
- Diaz M.C., Rützler K., 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535–546.
- Dixon P. 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14: 927–930. doi: 10.1658/1100-9233(2003)014[0927:vaporf]2.0.co;2
- Efremova S.M. 2001. Sponges (Porifera). In: Timoshkin O.A. (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area. Novosibirsk, pp. 182–192. (in Russian)
- Efremova S.M. 2004. New genus and new species of sponges from family Lubomirskiidae Rezvoj, 1936. In: Timoshkin O.A. (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area. Novosibirsk, pp. 1261–1278. (in Russian)
- Faith D.P., Minchin P.R., Belbin L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68. doi: 10.1007/BF00038687
- Gjessing M.C., Yutin N., Tengs T. et al. 2015. Salmon gill poxvirus, the deepest representative of the Chordopoxvirinae. Journal of Virology 89: 9348–9367. doi: 10.1128/JVI.01174-15
- Gower J.C., Legendre P. 1986. Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3: 5–48. doi: 10.1007/BF01896809
- Haller S.L., Peng C., McFadden G. et al. 2014. Poxviruses and the evolution of host range and virulence. Infection, Genetics and Evolution 21: 15–40. doi: 10.1016/j.meegid.2013.10.014
- Heck Jr. K.L., van Belle G., Simberloff D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56: 1459–1461. doi: 10.2307/1934716
- Hentschel U., Piel J., Degnan S.M. et al. 2012. Genomic insights into the marine sponge microbiome. Nature Reviews Microbiology 10: 641–654. doi: 10.1038/nrmicro2839
- Hill M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432. doi: 10.2307/1934352
- Hingamp P., Grimsley N., Acinas S.G. et al. 2013. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. The ISME Journal 7: 1678–1695. doi: 10.1038/ismej.2013.59
- Itskovich V., Kaluzhnaya O., Veynberg Y. et al. 2017. Endemic Lake Baikal sponges from deep water. 2: Study of the taxonomy and distribution of deep-water sponges of Lake Baikal. Zootaxa 4236: 335–342. doi: 10.11646/zootaxa.4236.2.8
- Jacquet S., Miki T., Noble R. et al. 2010. Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Advances in Oceanography and Limnology 1: 97–141. doi: 10.1080/19475721003743843
- Johnson P.T. 1984. Viral diseases of marine invertebrates. Helgoländer Meeresuntersuchungen [Heligoland Marine Surveys] 37: 65–98.
- Khanaev I.V., Kravtsova L.S., Maikova O.O. et al. 2018. Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: sponge disease and the problem of conservation of diversity. Journal of Great Lakes Research 44: 77–85. doi: 10.1016/j.jglr.2017.10.004
- Kim K.H., Bae J.W. 2011. Amplification methods bias metagenomic libraries of uncultured single-stranded and double-stranded DNA viruses. Applied and Environmental Microbiology 77: 7663–7668. doi: 10.1128/AEM.00289-11
- Kozhov M.M. 1970. About the benthos of south Baikal. Izvestiya BGNII pri IGU [Bulletin of the Biological and Geographical Research Institute at the Irkutsk State University] 23: 3–12. (in Russian)
- Kozhova O.M., Izmesteva L.R. 1998. Lake Baikal: Evolution and biodiversity. Leiden: Backhuys Publisher.
- Kravtsova L.S., Izhboldina L.A., Khanaev I.V. et al. 2012. Disturbances of the vertical zoning of green algae in the coastal part of the Listvennichnyi Gulf of Lake Baikal. Doklady Biological Sciences 448: 227–229. doi: 10.1134/S0012496612060026
- Kravtsova L.S., Izhboldina L.A., Khanaev I.V. et al. 2014. Nearshore benthic blooms of filamentous green algae in Lake Baikal. Journal of Great Lakes Research 40: 441–448. doi: 10.1016/j.jglr.2014.02.019
- Laffy P.W., Wood-Charlson E.M., Turaev D. et al. 2016. HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Frontiers in Microbiology 7: 822. doi: 10.3389/fmicb.2016.00822
- Laffy P.W., Wood‐Charlson E.M., Turaev D. et al. 2018. Reef invertebrate viromics: diversity, host specificity and functional capacity. Environmental Microbiology 20: 2125–2141. doi: 10.1111/1462-2920.14110
- Lohr J.E., Chen F., Hill R.T. 2005. Genomic analysis of bacteriophage ФJL001: insights into its interaction with a sponge-associated alpha-proteobacterium. Applied and Environmental Microbiology 71: 1598–1609. doi: 10.1128/AEM.71.3.1598-1609.2005
- Morgan M., Anders S., Lawrence M. et al. 2009. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25: 2607–2608. doi: 10.1093/bioinformatics/btp450
- Munn C.B. 2006. Viruses as pathogens of marine organisms – from bacteria to whales. Journal of the Marine Biological Association of the United Kingdom 86: 453–467. doi: 10.1017/S002531540601335X
- Oliveira G.P., Rodrigues R., Lima M.T. et al. 2017. Poxvirus host range genes and virus–host spectrum: a critical review. Viruses 9: 331. doi: 10.3390/v9110331
- Pascelli C., Laffy P.W., Kupresanin M. et al. 2018. Morphological characterization of virus-like particles in coral reef sponges. PeerJ 6. doi: 10.7717/peerj.5625
- Pita L., Rix L., Slaby B.M. et al. 2018. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6: 46. doi: 10.1186/s40168-018-0428-1
- Rohwer F., Seguritan V., Azam F. et al. 2002. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series 243: 1–10. doi: 10.3354/meps243001
- Rosenberg E., Koren O., Reshef L. et al. 2007. The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology 5: 355–362. doi: 10.1038/nrmicro1635
- Pruitt K.D., Tatusova T., Maglott D.R. 2005. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 33. doi: 10.1093/nar/gki025
- Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: a laboratory manual (Ed. 2). New York: Cold spring harbor laboratory press.
- Shimaraev M.N., Domysheva V.M. 2013. Trends in hydrological and hydrochemical processes in Lake Baikal under conditions of modern climate change. In: Goldman C.R., Kumagai M., Robarts R.D. (Eds.), Climatic change and global warming of inland waters. Impacts and mitigation for ecosystems and societies. Chichester, pp. 43–66. doi: 10.1002/9781118470596.ch3
- Soffer N., Brandt M.E., Correa A.M. et al. 2014. Potential role of viruses in white plague coral disease. The ISME Journal 8: 271–283. doi: 10.1038/ismej.2013.137
- Suttle C.A. 2007. Marine viruses – major players in the global ecosystem. Nature Reviews Microbiology 5: 801–812. doi: 10.1038/nrmicro1750
- Suzuki R., Shimodaira H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540–1542. doi: 10.1093/bioinformatics/btl117
- Timoshkin O.A., Samsonov D.P., Yamamuro M. et al. 2016. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): is the site of the world’s greatest freshwater biodiversity in danger? Journal of Great Lakes Research 42: 487–497. doi: 10.1016/j.jglr.2016.02.011
- Vacelet J., Gallissian M.F. 1978. Virus-like particles in cells of the sponge Verongia cavernicola (Demospongiae, Dictyoceratida) and accompanying tissues changes. Journal of Invertebrate Pathology 31: 246–254. doi: 10.1016/0022-2011(78)90014-9
- Vega Thurber R.L., Barott K.L., Hall D. et al. 2008. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proceedings of the National Academy of Sciences of the United States of America 105: 18413–18418. doi: 10.1073/pnas.0808985105
- Webster N.S. 2007. Sponge disease: a global threat? Environmental Microbiology 9: 1363–1375. doi: 10.1111/j.1462-2920.2007.01303.x
- Webster N.S., Thomas T. 2016. The Sponge Hologenome. mBio 7. doi: 10.1128/mBio.00135-16
- Weynberg K.D., Wood-Charlson E.M., Suttle C.A. et al. 2014. Generating viral metagenomes from the coral holobiont. Frontiers in Microbiology 5: 206. doi: 10.3389/fmicb.2014.00206
- Wilhelm S.W., Matteson A.R. 2008. Freshwater and marine virioplankton: a brief overview of commonalities and differences. Freshwater Biology 53: 1076–1089. doi: 10.1111/j.1365-2427.2008.01980.x
- Wommack K.E., Colwell R.R. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiology and Molecular Biology Reviews 64: 69–114.
- Wulff J.L. 2006. Ecological interactions of marine sponges. Canadian Journal of Zoology 84: 146–166. doi: 10.1139/Z06-019
- Yutin N., Koonin E.V. 2012. Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virology Journal 9: 161. doi: 10.1186/1743-422X-9-161
Supplementary files
