From Smoking to Dependence: The Role of Nicotine Metabolism (Review)

封面

如何引用文章

全文:

详细

The changing landscape of tobacco products dictates a new paradigm in smoking cessation efforts, which makes the understanding of nicotine metabolic aberrations, its neurobiological effects, and its pathophysiological impact on the human body still relevant. For this purpose, an analysis of publications on the topic was conducted using the medical databases eLIBRARY.RU, PubMed, and Medline (for the period 2000–2024). According to the obtained data, nicotine, a tobacco alkaloid, has a high affinity for brain tissues and produces a range of pharmacological effects, including positive psychoactive effects, leading to the development of strong dependence. Treatment of nicotine dependence involves pharmacotherapy, nicotine replacement therapy, and motivational counseling.

Nicotine, although it causes dependence, is not the main cause of smoking-related diseases. The main harm to health is caused by tobacco combustion products.

Alternative nicotine delivery systems, such as heated tobacco products and certified electronic cigarettes compliant with Russian national standards, may potentially reduce smoking-related harm, as they do not involve combustion. Electronic cigarettes, or vapes, use liquids, including those containing nicotine, whereas heated tobacco products heat actual tobacco without combustion, which significantly reduces the levels of harmful substances emitted compared to cigarette smoke.

These devices are gaining popularity and are the subject of active research. Comprehensive studies of all types of nicotine-containing products available on the Russian Federation market, including heated tobacco products and electronic nicotine delivery systems, are currently of high relevance. These studies should aim to evaluate their impact on consumer health in comparison with traditional cigarette smoking, to assess the potential for integrating their results into clinical guidelines for the prevention and treatment of tobacco-related diseases, and to support the development of up-to-date differentiated regulation in accordance with the actual risk profile of various nicotine-containing products.

Considering that modifying smoking-related risk factors remains a highly challenging task, understanding nicotine metabolism, its effects on the human body, and the harm reduction approach implemented through switching from cigarette smoking to alternative nicotine delivery systems may have a positive impact on increasing life expectancy among adult smokers who are not motivated to quit.

作者简介

Elvira Kapkaeva

Ankor HR Solutions

编辑信件的主要联系方式.
Email: kapkaeva.elia@yandex.ru
ORCID iD: 0009-0005-1379-3171
俄罗斯联邦, 2 Enthusiasts boul., Moscow, 109544

Olga Obukhova

Blokhin National Medical Research Center of Oncology

Email: obukhova0404@yandex.ru
ORCID iD: 0000-0003-0197-7721
SPIN 代码: 6876-7701

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 23 Kashirskoe shosse, Moscow, 115522

Elena Gameeva

National Medical Research Center for Medical Rehabilitation and Balneology

Email: gameevaev@fmba.gov.ru
ORCID iD: 0000-0002-8509-4338
SPIN 代码: 9423-7155

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Moscow

Alexandra Stepanova

National Medical Research Center for Medical Rehabilitation and Balneology

Email: stepanovas@list.ru
ORCID iD: 0000-0001-8085-8645
SPIN 代码: 7401-7038

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Anna Merzlyakova

Herzen Moscow Oncology Research Center — branch of National Medical Research Center of Radiology

Email: pavlova-ania@mail.ru
ORCID iD: 0000-0003-0679-9178
SPIN 代码: 5159-5942

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

参考

  1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–1249.
  2. Federal Law of Russian Federation No. 15-FZ of February 23, 2013 ”On the protection of citizens’ health from the effects of second-hand tobacco smoke and the consequences of tobacco consumption”. Available from: http://static.kremlin.ru/media/acts/files/0001201302250007.pdf. (In Russ.)
  3. All-Russian Public Opinion Research Center (VTsIOM). Study ”Smoking in Russia: Monitoring”. Publication date: 12.07.2022. Available from: https://wciom.ru/analytical-reviews/analiticheskii-obzor/kurenie-v-rossii-monitoring-2022. (In Russ.)
  4. Federal State Statistics Service (Rosstat). ”Selective monitoring of the health status of the population in 2023”, Section 8, Table 22. Moscow: Rosstat, 2023. Available from: https://rosstat.gov.ru/free_doc/new_site/zdor23/PublishSite_2023/index.html. (In Russ.)
  5. Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99:29–38. doi: 10.1111/j.1360-0443.2004.00540.x
  6. Novikov VE, Zaleskaya AI, Pozhilova EV. Modern approaches to pharmacotherapy of nicotine addiction. Bulletin of the Smolensk State Medical Academy. 2024;23(1):48–57. EDN: GYMMDK doi: 10.3897/rrpharmacology.7.66627
  7. Vance L, Glanville B, Ramkumar K, et al. The effectiveness of smoking cessation interventions in rural and remote populations: Systematic review and meta-analyses. Int J Drug Policy. 2022;106:103775. doi: 10.1016/j.drugpo.2022.103775
  8. Elfimova IV, Elfimov DA, Shumel AI, et al. Practical aspects of providing medical care for smoking cessation. Medical Science and Education of the Urals. 2020;21(3)(103):95–98. EDN: NKONLY doi: 10.36361/1814-8999-2020-21-3-95-98
  9. Hartmann-Boyce J, Lindson N, Butler AR, et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev. 2022;11(11):CD010216. doi: 10.1002/14651858.CD010216.pub7
  10. Wittenberg RE, Wolfman SL, De Biasi M, Dani JA. Nicotinic acetylcholine receptors and nicotine addiction: a brief introduction. Neuropharmacology. 2020;177:108256. doi: 10.1016/j.neuropharm.2020.108256
  11. Gotti C, Zoli M. Nicotine inside neurons. Oncotarget. 2016;7(50):81977–81978. doi: 10.18632/oncotarget.13463
  12. Güleç G, Coşan DT, Şahin FM, et al. Association of nicotine use disorder with neurexin 3 gene polymorphisms. Turk Psikiyatri Derg. 2021;32(3):160–166. doi: 10.5080/u25686
  13. Murphy SE. Nicotine Metabolism and Smoking: Ethnic Differences in the Role of P450 2A6. Chem Res Toxicol. 2017;30(1):410–419. doi: 10.1021/acs.chemrestox.6b00387
  14. Tan X, Vrana K, Ding Z-M. Cotinine: Pharmacologically Active Metabolite of Nicotine and Neural Mechanisms for Its Actions. Front Behav Neurosci. 2021;15:758252. doi: 10.3389/fnbeh.2021.758252
  15. Zaitseva OE, Masagutov RM, Yuldashev VL. Tobacco addiction and nicotine metabolism: is there a relationship? Fundamental research. 2014;(10-8):1612–1616. EDN: TFDWYB
  16. Valentine G, Sofuoglu M. Cognitive Effects of Nicotine: Recent Progress. Curr Neuropharmacol. 2018;16(4):403–414. doi: 10.2174/1570159X15666171103152136
  17. Heishman SJ, Kleykamp BA, Singleton EG. Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology (Berl.). 2010;210(4):453–469. doi: 10.1007/s00213-010-1848-1
  18. Posner MI, Rothbart MK. Research on attention networks as a model for the integration of psychological science. Annu Rev Psychol. 2007;58:1–23. doi: 10.1146/annurev.psych.58.110405.085516
  19. Ettinger U, Faiola E, Kasparbauer AM, et al. Effects of nicotine on response inhibition and interference control. Psychopharmacology (Berl.). 2017;234(7):1093–1111. doi: 10.1007/s00213-017-4542-8
  20. Drakopanagiotakis F, Krauss E, Michailidou I, et al. Lung Cancer and Interstitial Lung Diseases. Cancers (Basel). 2024;16(16):2837. doi: 10.3390/cancers16162837
  21. Ishida M, Sakai C, Kobayashi Y, Ishida T. Cigarette Smoking and Atherosclerotic Cardiovascular Disease. J Atheroscler Thromb. 2024;31(3):189–200. doi: 10.5551/jat.RV22015
  22. Wei Y, Hägg S, Mak JKL, et al. Metabolic profiling of smoking, associations with type 2 diabetes and interaction with genetic susceptibility. Eur J Epidemiol. 2024;39(6):667–678. doi: 10.1007/s10654-024-01117-5
  23. Debnath DJ, Ray J, Jah SM, Marimuthu Y. Smoking and the risk of type 2 diabetes: a cross-sectional analytical study. Indian J Community Med. 2024;49(4):588–592. doi: 10.4103/ijcm.ijcm_1009_22
  24. Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res. 2021;787:108365. doi: 10.1016/j.mrrev.2021.108365
  25. Gui X, Yang Z, Li MD. Effect of cigarette smoke on gut microbiota: state of knowledge. Front Physiol. 2021;12:673341. doi: 10.3389/fphys.2021.673341
  26. Ness-Jensen E, Lagergren J. Tobacco smoking, alcohol consumption and gastro-oesophageal reflux disease. Best Pract Res Clin Gastroenterol. 2017;31(5):501–508. doi: 10.1016/j.bpg.2017.09.004
  27. Yasuda K, Chinda D, Shimoyama T, et al. Factors Predicting Effectiveness of Eradication Therapy for Helicobacter pylori-Associated Dyspepsia Symptoms. Life (Basel). 2024;14(8):935. doi: 10.3390/life14080935
  28. Han X, Xu Z, Ma D, et al. Effect of smoking cessation on the likelihood of pancreatitis and pancreatic cancer. Tob Induc Dis. 2024;22(July):130. doi: 10.18332/tid/190635
  29. Alexandrov LB, Ju YS, Haase K, et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016;354(6312):618–622. doi: 10.1126/science.aag0299
  30. Jung H-S, Chang Y, Kwon M-J, et al. Smoking and the risk of non-alcoholic fatty liver disease: a cohort study. Am J Gastroenterol. 2019;114:453–463. doi: 10.1038/s41395-018-0283-5
  31. Khasawneh M, Spence AD, Addley J, Allen PB. The role of smoking and alcohol behaviour in the management of inflammatory bowel disease. Best Pract Res Clin Gastroenterol. 2017;31:553–559. doi: 10.1016/j.bpg.2017.10.004
  32. Botteri E, Borroni E, Sloan EK, et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: a meta-analysis. Am J Gastroenterol. 2020;115:1940–1949. doi: 10.14309/ajg.0000000000000803
  33. Blackwell J, Saxena S, Alexakis C, et al. The impact of smoking and smoking cessation on disease outcomes in ulcerative colitis: a nationwide population-based study. Aliment Pharmacol Ther. 2019;50:556–567. doi: 10.1111/apt.15390
  34. Elfers K, Sehnert AS, Wagner A, et al. Functional and structural investigation of myenteric neurons in the human colon. Gastro Hep Adv. 2024;4(1):100537. doi: 10.1016/j.gastha.2024.08.016
  35. Goniewicz ML, Havel CM, Yu L, et al. Elimination kinetics of the tobacco-specific biomarker and lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol. Cancer Epidemiol Biomarkers Prev. 2009;18(12):3421–3425. doi: 10.1158/1055-9965.EPI-09-0874
  36. International Agency for Research on Cancer. List of Classifications — IARC Monographs on the Identification of Carcinogenic Hazards to Humans. 2021. Available from: https://monographs.iarc.who.int/list-of-classifications. Accessed: May 28, 2021.
  37. NASEM. Public health consequences of e-cigarettes conclusions by outcome constituents of e-cigarettes. 2018. Available from: https://pubmed.ncbi.nlm.nih.gov/29894118/ Accessed: August 20, 2019.
  38. Hecht SS, Stepanov I, Carmella SG. Exposure and metabolic activation biomarkers of carcinogenic tobacco-specific nitrosamines. Acc Chem Res. 2016;49(1):106–114. doi: 10.1021/acs.accounts.5b00472
  39. Belitsky GA, Krivosheeva LV, Khitrovo IA, et al. Carcinogenic tobacco-specific N-nitrosamines and the problem of the „safe cigarette“. J Blokhin Russian Cancer Research Center RAMS. 2010;21(2):3–9. EDN: MTECQL
  40. Batra A, Kiefer F, Andreas S, et al. S3-Leitlinie „Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung“. SUCHT. 2021;67(2):55–75. doi.org/10.1024/0939-5911/a000703
  41. Farley SM, Maroko AR, Suglia SF, Thorpe LE. The Influence of Tobacco Retailer Density and Poverty on Tobacco Use in a Densely Populated Urban Environment. Public Health Rep. 2019;134(2):164–171. doi: 10.1177/0033354918824330
  42. Kurdyś-Bykowska P, Kośmider L, Bykowski W, et al. Epidemiology of traditional cigarette and e-cigarette use among adolescents in Poland: analysis of sociodemographic risk factors. Int J Environ Res Public Health. 2024;21(11):1493. doi: 10.3390/ijerph21111493
  43. Pang S, Subramaniam M, Abdin E, et al. Prevalence and predictors of tobacco use in the elderly. Int J Geriatr Psychiatry. 2016;31(7):716–722. doi: 10.1002/gps.4382
  44. Giulietti F, Filipponi A, Rosettani G, et al. Pharmacological approach to smoking cessation: an updated review for daily clinical practice. High Blood Press Cardiovasc Prev. 2020;27(5):349–362. doi: 10.1007/s40292-020-00396-9
  45. Thomas KH, Dalili MN, Lopez-Lopez JA, et al. Smoking cessation medicines and e-cigarettes: a systematic review, network meta-analysis and cost-effectiveness analysis. Health Technol Assess. 2021;25(59):1–224. doi: 10.3310/hta25590
  46. Moser J, Ashworth IW, Harris L, et al. N-Nitrosamine formation in pharmaceutical solid drug products: experimental observations. J Pharm Sci. 2023;112(5):1255–1267. doi: 10.1016/j.xphs.2023.01.027
  47. Li K, Ricker K, Tsai FC, et al. Estimated cancer risks associated with nitrosamine contamination in commonly used medications. Int J Environ Res Public Health. 2021;18(18):9465. doi: 10.3390/ijerph18189465
  48. Pfizer Ltd. UK Supply Update — Champix (Varenicline Tartrate). 2021. Available from: https://www.ncsct.co.uk/usr/pub/Champix%20Supply%20Statement%2025.6.21.pdf Accessed: 7 February 2023.
  49. Ministry of Health of the Russian Federation. Clinical guidelines: Mental and behavioral disorders caused by tobacco (nicotine) use. Tobacco dependence syndrome, tobacco withdrawal syndrome in adults. ID: 601_2. 2024. (In Russ.) Available from: https://cr.minzdrav.gov.ru/view-cr/601_2#doc_a1 Accessed: 7 February 2025
  50. Livingstone-Banks J, Fanshawe TR, Thomas KH, et al. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2023;5(5):CD006103. doi: 10.1002/14651858.CD006103.pub8
  51. Hartmann-Boyce J, Chepkin SC, Ye W, et al. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev. 2018;5(5):CD000146. doi: 10.1002/14651858.CD000146.pub5
  52. Ward AM, Yaman R, Ebbert JO. Electronic nicotine delivery system design and aerosol toxicants: a systematic review. PLoS One. 2020;15(6):e0234189. doi: 10.1371/journal.pone.0234189
  53. Taylor E, Simonavičius E, McNeill A, et al. Exposure to tobacco-specific nitrosamines among people who vape, smoke, or do neither: a systematic review and meta-snalysis. Nicotine Tob Res. 2024;26(3):257–269. doi: 10.1093/ntr/ntad156
  54. Picavet P, Haziza C, Lama N, et al. Comparison of the pharmacokinetics of nicotine following single and Ad Libitum use of a tobacco heating system or combustible cigarettes. Nicotine Tob Res. 2016;18(5):557–563. doi: 10.1093/ntr/ntv220
  55. Brossard P, Weitkunat R, Poux V, et al. Nicotine pharmacokinetic profiles of the tobacco heating system 2.2, cigarettes and nicotine gum in Japanese smokers. Regul Toxicol Pharmacol. 2017;89:193–199. doi: 10.1016/j.yrtph.2017.07.032
  56. Başaran R, Güven NM, Eke BC. An overview of iQOS® as a new heat-not-burn tobacco product and Its potential effects on human health and the environment. Turk J Pharm Sci. 2019;16(3):371–374. doi: 10.4274/tjps.galenos.2018.79095
  57. U.S. Food and Drug Administration. FDA authorizes marketing of IQOS tobacco heating system with ‘reduced exposure’ Information. FDA; 2020. Available from: https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-iqos-tobacco-heating-system-reduced-exposure-information. Accessed: May 14, 2024.
  58. U.S. Food and Drug Administration. Scientific review of modified risk tobacco product application (MRTPA) under section 911(d) of the FD&C Act — Technical Project Lead. Available from: https://www.fda.gov/media/139796/download. Accessed: May 14, 2024.
  59. Bovard D, Renggli K, Marescotti D, et al. Impact of aerosols on liver xenobiotic metabolism: a comparison of two methods of exposure. Toxicol In Vitro. 2022;79:105277. doi: 10.1016/j.tiv.2021.105277
  60. Malinska D, Szymański J, Patalas-Krawczyk P, et al. Assessment of mitochondrial function following short- and long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product and reference cigarettes. Food Chem Toxicol. 2018;115:1–12. doi: 10.1016/j.fct.2018.02.013
  61. Walczak J, Malińska D, Drabik K, et al. Mitochondrial network and biogenesis in response to short and long-term exposure of human BEAS-2B cells to aerosol extracts from the tobacco heating system 2.2. Cell Physiol Biochem. 2020;54(2):230–251. doi: 10.33594/000000216
  62. Leigh NJ, Tran PL, O’Connor RJ, Goniewicz ML. Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tobacco Control. 2018;27(Suppl.1):s26–s29. doi: 10.1136/tobaccocontrol-2018-054317
  63. Beatrice F, Massaro G. Exhaled carbon monoxide levels in forty resistant to cessation male smokers after six months of full switch to electronic cigarettes (e-cigs) or to a tobacco heating systems (THS). Int J Environ Res Public Health. 2019;16(20):3916. doi: 10.3390/ijerph16203916
  64. Nishimoto-Kusunose S, Sawa M, Inaba Y, et al. Exposure to aerosol extract from heated tobacco products causes a drastic decrease of glutathione and protein carbonylation in human lung epithelial cells. Biochem Biophys Res Commun. 2022;589:92–99. doi: 10.1016/j.bbrc.2021.12.004
  65. Gonzalez-Suarez I, Martin F, Marescotti D, et al. In vitro systems toxicology assessment of a candidate modified risk tobacco product shows reduced toxicity compared to that of a conventional cigarette. Chem Res Toxicol. 2016;29(1):3–18. doi: 10.1021/acs.chemrestox.5b00321
  66. Van der Toorn M, Sewer A, Marescotti D, et al. The biological effects of long-term exposure of human bronchial epithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro. 2018;50:95–108. doi: 10.1016/j.tiv.2018.02.019
  67. Iskandar AR, Titz B, Sewer A, et al. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb). 2017;6(5):631–653. doi: 10.1039/c7tx00047b
  68. Sewer A, Kogel U, Talikka M, et al. Evaluation of the tobacco heating system 2.2 (THS2.2). Part 5: microRNA expression from a 90-day rat inhalation study indicates that exposure to THS2.2 aerosol causes reduced effects on lung tissue compared with cigarette smoke. Regul Toxicol Pharmacol. 2016;81(Suppl.2):S82–S92. doi: 10.1016/j.yrtph.2016.11.018
  69. Polosa R, Morjaria JB, Prosperini U, et al. Health outcomes in COPD smokers using heated tobacco products: a 3-year follow-up. Intern Emerg Med. 2021;16(3):687–696. doi: 10.1007/s11739-021-02674-3
  70. Van der Toorn M, Frentzel S, De Leon H, et al. Aerosol from a candidate modified risk tobacco product has reduced effects on chemotaxis and transendothelial migration compared to combustion of conventional cigarettes. Food Chem Toxicol. 2015;86:81–87. doi: 10.1016/j.fct.2015.09.016
  71. Horinouchi T, Miwa S. Comparison of cytotoxicity of cigarette smoke extract derived from heat-not-burn and combustion cigarettes in human vascular endothelial cells. J Pharmacol Sci. 2021;147(3):223–233. doi: 10.1016/j.jphs.2021.07.005
  72. Poussin C, van der Toorn M, Scheuner S, et al. Systems toxicology study reveals reduced impact of heated tobacco product aerosol extract relative to cigarette smoke on premature aging and exacerbation effects in aged aortic cells in vitro. Arch Toxicol. 2021;95(10):3341–3359. doi: 10.1007/s00204-021-03123-y
  73. Poussin C, Laurent A, Peitsch MC, et al. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology. 2016;339:73–86. doi: 10.1016/j.tox.2015.11.007
  74. Lüdicke F, Ansari SM, Lama N, et al. Effects of switching to a heat-not-burn tobacco product on biologically relevant biomarkers to assess a candidate modified risk tobacco product: a randomized trial. Cancer Epidemiol Biomarkers Prev. 2019;28(11):1934–1943. doi: 10.1158/1055-9965.EPI-18-0915
  75. Rodrigo G, Jaccard G, Tafin Djoko D, et al. Cancer potencies and margin of exposure used for comparative risk assessment of heated tobacco products and electronic cigarettes aerosols with cigarette smoke. Arch Toxicol. 2021;95(1):283–298. doi: 10.1007/s00204-020-02924-x
  76. Lachenmeier DW, Anderson P, Rehm J. Heat-not-burn tobacco products: the devil in disguise or a considerable risk reduction? IJADR. 2018;7(2):8–11. doi: 10.7895/ijadr.250
  77. Hirano T, Takei T. Estimating the carcinogenic potency of second-hand smoke and aerosol from cigarettes and heated tobacco products. Int J Environ Res Public Health. 2020;17(22):8319. doi: 10.3390/ijerph17228319
  78. ESC Guidelines for the Prevention of Cardiovascular Diseases in Clinical Practice. Russ J Cardiol. 2022;27(7):5155. EDN: VQDNIK doi: 10.15829/1560-4071-2022-5155
  79. Virani SS, Newby LK, Arnold SV, et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2023;148(9):e9-e119. doi: 10.1161/CIR.0000000000001168
  80. Gapstur SM, Drope JM, Jacobs EJ, et al. A blueprint for the primary prevention of cancer: targeting established, modifiable risk factors. CA Cancer J Clin. 2018;68(6):446–470. doi: 10.3322/caac.21496
  81. Standart italiani per la cura del diabete mellito. 2018. Available from: https://aemmedi.it/wp-content/uploads/2009/06/AMD-Standard-unico1.pdf
  82. Saab R, Rivas E, Yalcin EK, et al. The association of vaping and electronic cigarette use with postoperative hypoxemia and respiratory complications: a retrospective cohort analysis. Can J Anaesth. 2024;71(11):1486–1494. doi: 10.1007/s12630-024-02801-6
  83. Luxton NA, Shih P, Rahman MA. Electronic cigarettes and smoking cessation in the perioperative period of cardiothoracic surgery: views of australian clinicians. Int J Environ Res Public Health. 2018;15(11):2481. doi: 10.3390/ijerph15112481
  84. Chong-Silva DC, Sant’Anna MFBP, Riedi CA, et al. Electronic cigarettes: «wolves in sheep’s clothing». J Pediatr (Rio J). 2025;101(2):122–132. doi: 10.1016/j.jped.2024.06.015
  85. Federal Law of Russian Federation No. 15-FZ of 23.02.2013 (as amended on 28.12.2024) «On the protection of citizens’ health from exposure to second-hand tobacco smoke, the consequences of tobacco consumption or consumption of nicotine-containing products» Available from: https://www.consultant.ru/document/cons_doc_LAW_142515/382b0b5ae542851db6ce836ce3bac60c5d44ef4b/
  86. Rozanov AV, Polyakov AP, Zaridze DG, et al. The resolution of the expert council ”Possibilities of risk modification in patients with oncological diseases of the head and neck organs”. Clinician. 2024;18(2):64–69.doi: 10.17650/1818-8338-2024-18-2-K719
  87. Rozanov AV. Chronic non-communicable diseases: the role of tobacco withdrawal and cessation in the treatment of a patient diagnosed with lung cancer. Anti-Cancer Society of Russia, 2023.08.10. Available from: https://rcs-pror.org/storage/app/media/uploaded-files/ekspertnogo-soveta-khronicheskie-neinfektsionnye-zabolevaniya-29052023-pismo.pdf (In Russ.)
  88. Ametov AS. Resolution of the Council of Experts ”Risk modification in patients with endopathologies”. Endocrinology: news, opinions, training. 2024;13(3):00–00 (In Russ.) doi: 10.33029/2304–9529–2024–13–3–00–00
  89. Sergienko IV, Rozanov AV, Lebedeva AYu, et al. The resolution of the expert Council “Assistance to patients with atherosclerotic cardiovascular diseases who are not motivated to quit smoking”. Atherosclerosis and Dyslipidemia. 2024;(4):60–64. doi: 10.34687/2219-8202.JAD.2024.04.0007
  90. Lindson N, Butler AR, McRobbie H, et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev. 2025;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub9

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».