Нормальные моды волновода как собственные векторы самосопряжённого операторного пучка

Обложка

Цитировать

Полный текст

Аннотация

В статье рассматривается волновод постоянного односвязного сечения S при условии, что заполняющее волновод вещество характеризуется диэлектрической и магнитной проницаемостями, меняющимися плавно на сечении S, но постоянными вдоль оси волновода. На стенках волновода взяты условия идеальной проводимости. На основе найденного ранее представления электромагнитного поля в таком волноводе при помощи четырёх скалярных функций — двух электрических и двух магнитных потенциалов — уравнения Максвелла записаны относительно потенциалов и продольных компонент поля. Из этой системы удаётся исключить потенциалы и записать пару интегро-дифференциальных уравнений относительно одних продольных компонент, расщепляющихся на два несвязанных волновых уравнения в оптически однородном случае. В оптически неоднородном случае этот подход позволяет свести задачу об отыскании нормальных мод волновода к исследованию спектра квадратичного самосопряжённого операторного пучка.

Об авторах

М. Д. Малых

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: malykh_md@pfur.ru

Doctor of Physical and Mathematical Sciences, Assistant Professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. A. G. Sveshnikov and I. E. Mogilevsky, Mathematical problems in the theory of diffraction [Matematicheskiye zadachi teorii difraktsii]. Moscow: MSU, 2010, in Russian.
  2. K. Zhang and D. Li, Electromagnetic theory for microwaves and optoelectronics, 2nd ed. Berlin: Springer, 2008.
  3. A. N. Bogolyubov, A. L. Delitsyn, and A. G. Sveshnikov, “On the completeness of the set of eigen- and associated functions of a waveguide,” Computational Mathematics and Mathematical Physics, vol. 38, no. 11, pp. 1815-1823, 1998.
  4. A. N. Bogolyubov, A. L. Delitsyn, and M. D. Malykh, “On the root vectors of a cylindrical waveguide,” Computational Mathematics and Mathematical Physics, vol. 41, no. 1, pp. 121-124, 2001.
  5. A. L. Delitsyn, “On the completeness of the system of eigenvectors of electromagnetic waveguides,” Computational Mathematics and Mathematical Physics, vol. 51, pp. 1771-1776, 2011. DOI: 10. 1134 / S0965542511100058.
  6. W. C. Chew. “Lectures on theory of microwave and optical waveguides.” (2012), [Online]. Available: http://wcchew.ece.illinois.edu/chew/ course/tgwAll20121211.pdf.
  7. N. A. Novoselova, S. B. Raevskii, and A. A. Titarenko, “Calculation of characteristics of symmetric modes propagating in a circular waveguide with radially-heterogeneous dielectric filling [Raschet kharakteristik rasprostraneniya simmetrichnykh voln kruglogo volnovoda s radial’no-neodnorodnym dielektricheskim zapolneniyem],” Trudy Nizhegorodskogo gosudarstvennogo tekhnicheskogo universiteta im. R.Ye. Alekseyeva, no. 2(81), pp. 30-38, 2010, in Russian.
  8. A. L. Delitsyn and S. I. Kruglov, “Mixed finite elements used to analyze the real and complex modes of cylindrical waveguides,” Moscow University Physics Bulletin, vol. 66, pp. 546-560, 2011. DOI: 10.3103/ S0027134911060063.
  9. A. L. Delitsyn and S. I. Kruglov, “Application of the mixed finite element method for calculating the modes of cylindrical waveguides with a variable refractive index [Primeneniye metoda smeshannykh konechnykh elementov dlya vychisleniya mod tsilindricheskikh volnovodov s peremennym pokazatelem prelomleniya],” Zhurnal radioelektroniki, no. 4, pp. 1-28, 2012, in Russian.
  10. F. Hecht, Freefem++, 3rd ed., Laboratoire Jacques-Louis Lions, Universitè Pierre et Marie Curie, Paris, 2018.
  11. M. D. Malykh, N. E. Nikolaev, L. A. Sevastianov, and A. A. Tiutiunnik, “On the representation of electromagnetic fields in closed waveguides using four scalar potentials,” Journal of Electromagnetic Waves and Applications, vol. 32, no. 7, pp. 886-898, 2018. doi: 10.1080/09205071. 2017.1409137.
  12. M. D. Malykh and L. A. Sevast’yanov, “On the representation of electromagnetic fields in discontinuously filled closed waveguides by means of continuous potentials,” Computational Mathematics and Mathematical Physics, vol. 59, pp. 330-342, 2019. doi: 10.1134/S0965542519020118.
  13. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-selfadjoint Operators in Hilbert Space. American Mathematical Society, 1969.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».