Сравнительный анализ методов машинного обучения на примере задачи определения мюонного распада

Обложка

Цитировать

Полный текст

Аннотация

Применение алгоритмов машинного обучения для анализа статистических моделей имеет достаточно длинную историю. Развитие компьютерной техники дало этим алгоритмам новое дыхание. Особенно громкую известность получило такое направление машинного обучения, как глубинное обучение. Однако авторы полагают, что многие исследователи пытаются использовать методы глубинного обучения за пределами их применимости. Этому способствуют как широкая распространённость программных комплексов, реализующих алгоритмы глубинного обучения, так и кажущаяся простота исследования. Всё это стало побудительным мотивом для проведения сравнения алгоритмов глубинного обучения и классических алгоритмов машинного обучения. В качестве задачи был выбран эксперимент на Большом адронном коллайдере, поскольку авторы знакомы с данной научной областью, а также потому, что данные эксперимента доступны публично. В статье проводится сравнение различных алгоритмов машинного обучения применительно к задаче распознания реакции распада τ →μ + μ + μ+ на Большом адронном коллайдере. Используются готовые свободные реализации алгоритмов машинного обучения. Алгоритмы сравниваются друг с другом на основе вычисляемых метрик. В результате исследования можно сделать вывод, что все рассмотренные методы машинного обучения вполне сопоставимы друг с другом (с учётом выбранных метрик), при этом разные методы имеют разные области применимости.

Об авторах

М. Н. Геворкян

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: gevorkyan-mn@rudn.ru

Кафедра прикладной информатики и теории вероятностей

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

А. В. Демидова

Российский университет дружбы народов

Email: demidova-av@rudn.ru

Кафедра прикладной информатики и теории вероятностей

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Д. С. Кулябов

Российский университет дружбы народов; Объединённый институт ядерных исследований

Email: kulyabov-ds@rudn.ru

Кафедра прикладной информатики и теории вероятностей; Лаборатория информационных технологий

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Список литературы

  1. M. N. Gevorkyan, A. V. Demidova, T. S. Demidova, and A. A. Sobolev, “Review and comparative analysis of machine learning libraries for machine learning,” Discrete and Continuous Models and Applied Computational Science, vol. 27, no. 4, pp. 305-315, Dec. 2019. DOI: 10.22363/ 2658-4670-2019-27-4-305-315.
  2. L. A. Sevastianov, A. L. Sevastianov, E. A. Ayrjan, A. V. Korolkova, D. S. Kulyabov, and I. Pokorny, “Structural Approach to the Deep Learning Method,” in Proceedings of the 27th Symposium on Nuclear Electronics and Computing (NEC-2019), V. Korenkov, T. Strizh, A. Nechaevskiy, and T. Zaikina, Eds., ser. CEUR Workshop Proceedings, vol. 2507, Budva, Sep. 2019, pp. 272-275.
  3. P. Langacker, The standard model and beyond, ser. Series in High Energy Physics, Cosmology and Gravitation. CRC Press, 2009.
  4. I. Lakatos, “Falsification and the Methodology of Scientific Research Programmes,” in Criticism and the growth of Knowledge, I. Lakatos and A. Musgrave, Eds., Cambr. University Press, 1970, pp. 91-195.
  5. R. Aaij et al., “Search for the lepton flavour violating decay τ– → μ– + μ+ + μ −,” Journal of High Energy Physics, vol. 2015, no. 2, p. 121, Feb. 2015. doi: 10.1007/JHEP02(2015)121. arXiv: 1409.8548.
  6. (2018). “Flavours of Physics: Finding τ→ μμμ (Kernels Only),” [Online]. Available: https://www.kaggle.com/c/flavours-of-physicskernels-only.
  7. F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
  8. F. Chollet. (2020). “Keras,” [Online]. Available: https://keras.io/.
  9. (2020). “XGBoost Documentation,” [Online]. Available: https:// xgboost.readthedocs.io.
  10. (2020). “Hep_ml,” [Online]. Available: https://arogozhnikov.github. io.
  11. (2020). “CNTC official repository,” [Online]. Available: https://github. com/Microsoft/cntk.
  12. Theano Development Team, “Theano: A Python framework for fast computation of mathematical expressions,” arXiv e-prints, vol. abs/1605.0, 2016.
  13. I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, ser. The Morgan Kaufmann Series in Data Management Systems. Elsevier, 2011. DOI: 10.1016/ C2009-0-19715-5.
  14. A. Bruce and P. Bruce, Practical Statistics for Data Scientists: 50 Essential Concepts. O’Reilly Media, 2017.
  15. J. VanderPlas, Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly Media, 2016.
  16. (2020). “Scikit-learn home site,” [Online]. Available: https://scikitlearn.org/stable/.
  17. D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression, ser. Wiley Series in Probability and Statistics. Wiley, 2013.
  18. J. M. Hilbe, Logistic Regression Models, ser. Chapman & Hall/CRC Texts in Statistical Science. Chapman and Hall/CRC, May 2009. doi: 10.1201/9781420075779.
  19. D. Ruppert, “The Elements of Statistical Learning: Data Mining, Inference, and Prediction,” Journal of the American Statistical Association, Springer Series in Statistics, vol. 99, no. 466, p. 567, 2004. DOI: 10. 1198/jasa.2004.s339.
  20. R. Collins, Machine Learning with Bagging and Boosting. Amazon Digital Services LLC - Kdp Print Us, 2018.
  21. J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001. doi: 10.2307/2699986.
  22. A. W. Kemp and B. F. J. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology. Ser. Chapman & Hall/CRC Texts in Statistical Science 4. CRC Press, Dec. 1997, vol. 53. doi: 10.2307/2533527.
  23. O. Soranson, Python Data Science Handbook: The Ultimate Guide to Learn How to Use Python for Data Analysis and Data Science. Learn the Essential Tools for Beginners to Work with Data, ser. Artificial Intelligence Series. Amazon Digital Services LLC - KDP Print US, 2019.
  24. M. Abadi, A. Agarwal, Paul Barham, EugeneBrevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, and Jeffrey Dean. (2015). “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,” [Online]. Available: http://tensorflow.org/.
  25. (2020). “TensorFlow home site,” [Online]. Available: https://www. tensorflow.org/.
  26. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».