Statistical methods for estimating quartiles of scientific conferences
- Authors: Ermolayeva A.M.1
-
Affiliations:
- RUDN University
- Issue: Vol 32, No 1 (2024)
- Pages: 5-17
- Section: Articles
- URL: https://journal-vniispk.ru/2658-4670/article/view/316835
- DOI: https://doi.org/10.22363/2658-4670-2024-32-1-5-17
- EDN: https://elibrary.ru/BAUTRQ
- ID: 316835
Cite item
Full Text
Abstract
The article presents the results of the evaluation of quartiles of scientific conferences presented by leading rating agencies. The estimates are based on the use of three methods of multivariate statistical analysis: linear regression, discriminant analysis and neural networks. A training sample was used for evaluation, including the following factors: age and frequency of the conference, number of participants and number of reports, publication activity of the conference organizers, citation of reports. As a result of the study, the linear regression model confirmed the correctness of the quartiles exposed for 77% of conferences, while the methods of neural networks and discriminant analysis gave similar results, confirming the correctness of the quartiles exposed for 81 and 85% of conferences, respectively.
About the authors
Anna M. Ermolayeva
RUDN University
Author for correspondence.
Email: ermolaeva-am@rudn.ru
ORCID iD: 0000-0001-6107-6461
Assistant of Probability Theory and Cyber Security
6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationReferences
- Journal Quartiles https://www.manuscriptedit.com/scholar-hangout/quartilesof-the-journals-and-the-secret-of-publishing/.
- Garfield, E. Citation indexes for science: A new dimension in documentation through association of ideas. Science 122, 108-111 (1955).
- Bergstrom, C. T., West, J. D. & Wiseman, M. A. The eigenfactor metrics. Journal of neuroscience 28, 11433-11434 (2008).
- Moed, H. F. Measuring contextual citation impact of scientific journals. Journal of informetrics 4, 265-277. doi: 10.1016/j.joi.2010.01.002 (2010).
- González-Pereira, B., Guerrero-Bote, V. P. & Moya-Anegón, F. A new approach to the metric of journals’ scientific prestige: The SJR indicator. Journal of informetrics 4, 379-391. doi:10. 1016/j.joi.2010.03.002 (2010).
- Kim, K. & Chung, Y. Overview of journal metrics. Science Editing 5, 16-20 (2018).
- Freyne, J., Coyle, L., Smyth, B. & Cunningham, P. Relative status of journal and conference publications in computer science. Communications of the ACM 53, 124-132. doi: 10.1145/1839676.1839701 (2010).
- Jahja, I., Effendy, S. & Yap, R. H. Experiments on rating conferences with CORE and DBLP. D-Lib Magazine 20. doi: 10.1045/november14-jahja (2014).
- Meho, L. I. Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics 13, 419-433. doi: 10.1016/j.joi.2019.02.006 (2019).
- Effendy, S. & Yap, R. H. C. Investigations on rating computer sciences conferences
- Lee, D. H. Predictive power of conference-related factors on citation rates of conference papers. Scientometrics 118, 281-304. doi: 10.1007/s11192-018-2943-z (2019).
- Core conference ranking http://portal.core.edu.au/conf-ranks/.
- CCF conference ranking https://www.ccf.org.cn/en/.
- Microsoft Academic’s field ratings for conferences https://www.microsoft.com/en-us/research/project/academic/articles/microsoft-academic-analytics/.
- Vrettas, G. & Sanderson, M. Conferences versus journals in computer science. Journal of the Association for Information Science and Technology 66, 2674-2684 (2015).
- Li, X., Rong, W., Shi, H., Tang, J. & Xiong, Z. The impact of conference ranking systems in computer science: A comparative regression analysis. Scientometrics 116, 879-907. doi:10. 1007/s11192-018-2763-1 (2018).
- Küngas, P., Karus, S., Vakulenko, S., Dumas, M., Parra, C. & Casati, F. Reverse-engineering conference rankings: what does it take to make a reputable conference? Scientometrics 96, 651-665. doi: 10.1007/s11192-012-0938-8 (2013).
- Steck, H. Evaluation of recommendations: rating-prediction and ranking in Proceedings of the 7th ACM conference on Recommender systems (2013), 213-220. doi: 10.1145/2507157.2507160.
- Chowdhury, G. R., Al Abid, F. B., Rahman, M. A., Masum, A. K. M. & Hassan, M. M. Prediction of upcoming conferences ranking in Bangladesh based on analytic network process and machine learning in 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET) (2018), 463-467. doi: 10.1109/ICISET.2018.8745590.
- Udupi, P. K., Dattana, V., Netravathi, P. & Pandey, J. Predicting global ranking of universities across the world using machine learning regression technique in SHS Web of Conferences 156 (2023), 04001.
- Scopus https://www.scopus.com.
- DBLP https://dblp.org/.
- Google Scholar https://scholar.google.com/.
- Kobzar, A. I. Applied mathematical statistics (Fizmatlit, 2006).
- Orlova, I. V., Kontsevaya, N. V., Turundaevsky, V. B., Urodovskikh, V. N. & Filonova, E. S. Multidimensional statistical analysis in economic problems: computer modeling in SPSS (textbook). International Journal of Applied and Fundamental Research, 248-250 (2014).
- Gafarov, F. M., Galimyanov, A. F., et al. Artificial neural networks and applications 2018.
Supplementary files
