Решение уравнения эйконала методом FSM на языке Julia

Обложка

Цитировать

Полный текст

Аннотация

Существует два основных подхода к численному решению уравнения эйконала: сведение его к системе ОДУ (метод характеристик) и конструирование специализированных методов для численного решения данного уравнения в виде дифференциального уравнения в частных производных. К последнему подходу относится метод FSM (Fast sweeping method). Резонно предположить, что специализированный метод должен обладать большей универсальностью. Цель данной работы - оценка применимости метода FSM для построения лучей и фронтов. Использовалась реализация метода FSM в библиотеке Eikonal языка программирования Julia. Метод применялся для численного моделирования сферических линз Максвелла, Люнеберга и Итона. Данные линзы были выбраны так как их оптические свойства хорошо изучены. Был выбран частный случай плоских линз, как наиболее простых для визуализации и интерпретации результатов. Результаты вычислений представлены в виде изображений фронтов и лучей для каждой из линз. Из анализа полученных изображений сделан вывод, что метод FSM хорошо подходит для построения фронтов электромагнитных волн. Попытка же по результатам его работы визуализировать траектории лучей наталкивается на ряд трудностей и в некоторых случаях дает неправильную визуальную картину.

Об авторах

К. А. Штепа

Российский университет дружбы народов

Email: 1042210111@pfur.ru
ORCID iD: 0000-0002-4092-4326
ResearcherId: GLS-1445-2022

PhD student of Probability Theory and Cyber Security

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

А. В. Фёдоров

Российский университет дружбы народов

Email: 1042210107@rudn.ru
ORCID iD: 0000-0002-3036-0117
Scopus Author ID: 57219092618
ResearcherId: AGY-9849-2022

PhD student of Probability Theory and Cyber Security

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

М. Н. Геворкян

Российский университет дружбы народов

Email: gevorkyan-mn@rudn.ru
ORCID iD: 0000-0002-4834-4895
Scopus Author ID: 57190004380
ResearcherId: E-9214-2016

Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Probability Theory and Cyber Security

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

А. В. Королькова

Российский университет дружбы народов

Email: korolkova-av@rudn.ru
ORCID iD: 0000-0001-7141-7610
Scopus Author ID: 36968057600
ResearcherId: I-3191-2013

Docent, Candidate of Sciences in Physics and Mathematics, Associate Professor of Department of Probability Theory and Cyber Security

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

Д. С. Кулябов

Российский университет дружбы народов; Объединённый институт ядерных исследований

Автор, ответственный за переписку.
Email: kulyabov-ds@rudn.ru
ORCID iD: 0000-0002-0877-7063
Scopus Author ID: 35194130800
ResearcherId: I-3183-2013

Professor, Doctor of Sciences in Physics and Mathematics, Professor of the Department of Probability Theory and Cyber Security of Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University); Senior Researcher of Laboratory of Information Technologies, Joint Institute for Nuclear Research

ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация; ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская Федерация

Список литературы

  1. Zhao, H. A fast sweeping method for Eikonal equations. Mathematics of Computation 74, 603-627 doi: 10.1090/s0025-5718-04-01678-3 (May 2004).
  2. Gremaud, P. A. & Kuster, C. M. Computational Study of Fast Methods for the Eikonal Equation. SIAM Journal on Scientific Computing 27, 1803-1816. doi: 10.1137/040605655 (Jan. 2006).
  3. Jeong, W. & Whitaker, R. A fast eikonal equation solver for parallel systems. SIAM conference 84112, 1-4 (2007).
  4. Kulyabov, D. S., Gevorkyan, M. N. & Korolkova, A. V. Software Implementation of the Eikonal Equation in Proceedings of the Selected Papers of the 8th International Conference ”Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems” (ITTMM-2018), Moscow, Russia, April 16, 2018 (eds Kulyabov, D. S., Samouylov, K. E. & Sevastianov, L. A.) 2177 (Moscow, Apr. 2018), 25-32.
  5. Kulyabov, D. S., Korolkova, A. V., Velieva, T. R. & Gevorkyan, M. N. Numerical analysis of eikonal equation in Saratov Fall Meeting 2018: Laser Physics, Photonic Technologies, and Molecular Modeling (ed Derbov, V. L.) 11066 (SPIE, Saratov, June 2019), 56. doi: 10.1117/12.2525142. arXiv: 1906.09467.
  6. Févotte, F. Fast Sweeping and Fast Marching methods for the solution of eikonal equations version 0.2.0. https://github.com/triscale-innov/Eikonal.jl (2023).
  7. Lauwens, B. & Downey, A. Think Julia How to Think Like a Computer Scientist. 229 pp. (O’Reilly Media, Inc., 2019).
  8. Born, M. & Wolf, E. Principles of Optics 7th. 952 pp. (Cambridge University Press, 1999).
  9. Fedorov, A. V., Stepa, C. A., Korolkova, A. V., Gevorkyan, M. N. & Kulyabov, D. S. Methodological derivation of the eikonal equation. Discrete and Continuous Models and Applied Computational Science 31, 399-418. doi: 10.22363/2658-4670-2023-31-4-399-418 (Dec. 2023).
  10. Ivanov, D. I., Ivanov, I. E. & Kryukov, I. A. Hamilton-Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry. Computational Mathematics and Mathematical Physics 45, 1297-1310 (8 2005).
  11. Kabanikhin, S. I. & Krivorotko, O. I. Numerical solution eikonal equation. Siberian Electronic Mathematical Reports 10, 28-34 (2013).
  12. Fonseca, N. J. G., Tyc, T. & Quevedo-Teruel, O. A solution to the complement of the generalized Luneburg lens problem. Communications Physics 4. doi: 10.1038/s42005-021-00774-2 (2021).
  13. Abbasi, M. A. B. & Fusco, V. F. Maxwell Fisheye Lens Based Retrodirective Array. Scientific Reports 9. doi: 10.1038/s41598-019-52779-1 (Nov. 2019).
  14. Zeng, Y. & Werner, D. H. Two-dimensional inside-out Eaton Lens. Design technique and TMpolarized wave properties. Optical Express 20, 2335-2345. doi: 10.1364/OE.20.002335 (Jan. 2012).
  15. Gevorkyan, M. N., Kulyabov, D. S. & Sevastyanov, L. A. Review of Julia programming language for scientific computing in The 6th International Conference ”Distributed Computing and Gridtechnologies in Science and Education” (2014), 27.
  16. Phillips, L. Practical Julia. A Hands-On Introduction for Scientific Minds 528 pp. (No Starch Press, Oct. 31, 2023).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».