Об одном методе сглаживания двумерной поверхности

Обложка

Цитировать

Полный текст

Аннотация

Регрессионный анализ ставит перед собой задачу отыскания функциональной зависимости между наблюдаемыми величинами изучаемого процесса. При этом исходные данные являются реализацией случайной величины, поэтому рассматривается зависимость математического ожидания. Такую задачу можно решать путём «сглаживания» исходных данных. Под сглаживанием понимается попытка удаления шума и несущественных фрагментов при сохранении наиболее важных свойств структуры данных, то есть результат подобен математическому ожиданию. Сглаживание данных, как правило, осуществляется путём параметрической или непараметрической регрессии. В случае параметрической регрессии необходимы априорные знания о форме уравнения регрессии. Большинство исследуемых данных, однако, невозможно параметризовать. С этой точки зрения непараметрическая и полупараметрическая регрессии представляются лучшим подходом к решению задачи сглаживания. Целью исследования ставилось разработка и реализация алгоритма быстрого сглаживания двумерных данных. Для достижения этой цели были проанализированы предыдущие работы в данной области и разработан свой подход, улучшающий предыдущие. В результате, в данной работе представлен алгоритм, который быстро и с минимальным потреблением памяти очищает данные от «шума» и «несущественных» частей. Для подтверждения «эффективности» алгоритма проведены сравнения с другими общепризнанными подходами на смоделированных и реальных данных. Результаты этих сравнений также приведены в статье.

Об авторах

Павел Геннадьевич Любин

ФБГОУ ВО МГТУ «СТАНКИН»

Email: lyubin.p@gmail.com

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».