О некоторых классах задач управления с фазовыми ограничениями

Обложка

Цитировать

Полный текст

Аннотация

В принципе максимума для задач оптимального управления с фазовыми ограничениями возникает борелевская мера-множитель Лагранжаμ. В различных инженерных приложениях, в частности, в некоторых задачах кинематического управления одним из важных вопросов является вопрос о непрерывности или абсолютной непрерывности такой меры. Скорость в подобного рода задачах имеет смысл фазовой переменной. Если модуль скорости ограничен, например, сверху (что вполне естественно в задачах кинематического управления), то это приводит к фазовым ограничениями, и, следовательно, к упомянутой выше мере-множителю Лагранжа μ в необходимых условиях оптимальности. Методы, которые используются для решения таких задач, как правило, подразумевают непрерывность меры. В этой работе рассматриваются примеры задач управления с фазовыми ограничениями, для которых можно гарантировать a priori (то есть без вычисления экстремального процесса), что соответствующая мера непрерывна.

Об авторах

Анна Викторовна Горбачева

Российский университет дружбы народов

Email: avgorbacheva@inbox.ru
Кафедра нелинейного анализа и оптимизации; Кафедра прикладной математики Российский государственный социальный университет ул. Вильгельма Пика, д. 4, стр. 6, Москва, Россия, 129226

Дмитрий Юрьевич Карамзин

Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН

Email: Dmitry_karamzin@mail.ru

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).