Паракомпактность экстремально несвязных пространств

Обложка

Цитировать

Полный текст

Аннотация

В данной работе рассматриваются ω-отображения, определяемые с помощью полуоткрытых множеств, т.е. множеств, являющихся объединениями открытых множеств и подмножеств их границ. Это квазинепрерывные ω-отображения. Характеризация паракомпактности, основанная на непрерывных ω-отображениях, давно и хорошо известна. Интересно выяснить, в какой мере можно отказаться от требования непрерывности ω-отображения в характеризации паракомпактности топологических пространств, обладающих теми или иными дополнительными свойствами. Одним из таких свойств является экстремальная несвязность. Основная цель нашей работы - дать характеристику экстремально несвязного паракомпактного пространства с помощью ω- отображения на метрическое пространство, ослабив требование непрерывности. Нами доказано, что экстремально несвязное пространство паракомпактно тогда и только тогда, когда для всякого его покрытия ω, состоящего из открытых множеств. существует квазинепрерывное ω-отображение на некоторое метрическое.

Об авторах

Владимир Леонидович Клюшин

Российский университет дружбы народов

Email: vklyushin@mail.ru
Кафедра высшей математики

- Джелал Хатем Хуссейн Аль Баяти

Российский университет дружбы народов

Email: jalalintuch@yahoo.com
Кафедра высшей математики

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).