Модель туннелирования кластеров через отталкивающие барьеры в представлении симметризованных координат
- Авторы: Гусев А.А.1
-
Учреждения:
- Объединённый институт ядерных исследований
- Выпуск: № 1 (2014)
- Страницы: 52-70
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2658-4670/article/view/328551
- ID: 328551
Цитировать
Аннотация
Представлены формулировка математической модели для системы A тождественных частиц с парными взаимодействиями осцилляторного типа в поле отталкивающих барьерных потенциалов в виде краевой задачи для системы уравнений эллиптического типа в новых симметризованных координатах, эффективные методы, алгоритмы и комплексы программ для анализа её решений. Рассмотрена редукция задачи для кластера из A тождественных частиц к подсистемам «(одна частица) + (кластер из (A − 1) частиц)» и «(кластер из Ab1 частиц) + (кластер из Ab2 частиц)». Решение краевой задачи для кластера из A тождественных частиц ищется в виде разложения по кластерным (A − 1)-мерным осцилляторным базисным функциям, симметричным или антисимметричным относительно перестановки A тождественных частиц — в представлении симметризованных координат [Гусев А.А. // Вестник РУДН. Серия «Математика. Информатика. Физика.» — 2013. — No 3, С. 52–67]. Задача редуцируется к краевой задаче для системы обыкновенных дифференциальных уравнений второго порядка с R-матричными условиями третьего рода в методе сильной связи каналов. Матрицы амплитуд прохождения и отражения и собственные функции непрерывного спектра задачи рассеяния по переменной центра масс вычисляются с помощью комплекса программ KANTBP 3.0. Эффективность подхода продемонстрирована анализом решений задачи квантового туннелирования кластеров, состоящих из нескольких тождественных частиц с парными взаимодействиями осцилляторного типа, через отталкивающие барьеры в s-волновом приближении. Проведён анализ эффекта квантовой прозрачности, т. е. резонансного туннелирования кластера из нескольких тождественных частиц через отталкивающие барьеры, который обусловлен наличием квазистационарных состояний, погруженных в непрерывный спектр. Для расчёта положений энергий квазистационарных состояний и их классификации разработан алгоритм решения краевой задачи для эллиптического уравнения в A-мерной области специального типа на основе разложения решения по A-мерному осцилляторному базису. Разработанный подход и комплекс программ ориентирован на анализ квантовой диффузии молекул, каналирования и туннелирования кластеров и ионов в кристаллах, а также тетраэдральной и октаэдральной симметрии ядер.
Об авторах
Александр Александрович Гусев
Объединённый институт ядерных исследований
Email: gooseff@jinr.ru
Лаборатория информационных технологий
Дополнительные файлы

