Асимптотическое решение задачи Штурма-Лиувилля с периодическими граничными условиями для релятивистского конечно-разностного уравнения Шрёдингера

Обложка

Цитировать

Полный текст

Аннотация

Описание взаимодействия релятивистских частиц в рамках квазипотенциального подхода широко применяется в современной физике. Этот подход основан на так называемой ковариантной формулировке квантовой теории поля, в которой эта теория рассматривается на пространственно-подобной трёхмерной гиперповерхности в пространстве Минковского. Особое внимание в этом подходе уделяется методам построения различных квазипотенциалов, а также использованию квазипотенциального подхода для описания характеристик связанных состояний в кварковых моделях, таких как амплитуды адронного упругого рассеяния, масс-спектры и ширины распадов мезонов, сечения глубокого неупругого рассеяния лептонов на адронах.

В настоящей работе сформулированы задачи Штурма–Лиувилля с периодическими граничными условиями на отрезке и на положительной полупрямой для усечённого релятивистского конечно-разностного уравнения Шрёдингера (уравнение Логунова–Тавхелидзе–Кадышевского, LTKT-уравнение) с малым параметром при старшей производной.

Целью работы является построение асимптотических решений (собственных функций и собственных значений) в виде регулярных и погранслойных частей решений для этой сингулярно возмущённой задачи Штурма–Лиувилля. Основная задача исследования состоит в асимптотическом анализе поведенческих решений рассматриваемой задачи в случае ε→0 и m→∞. Нами был предложен метод построения асимптотических решений (собственных функций и собственных значений), который является обобщением асимптотических методов решения сингулярно возмущённых задач, представленных в работах А. Н. Тихонова, А. Б. Васильевой и В. Ф. Бутузова. Основной результат данной работы — доказанные теоремы об асимптотической сходимости решений сингулярно возмущённой задачи к решениям вырожденной задач при ε→0 и сходимости решений усечённого LTKT-уравнения в случае m→∞. Кроме того, в статье нами рассматривается задача Штурма–Лиувилля на положительной полуоси для LTKT-уравнения 4-го порядка с периодическими граничными условиями для квантового гармонического осциллятора. Для этой задачи построены асимптотические приближения собственных функций и собственных значений и показана их сходимость к решению вырожденной задачи.

Об авторах

И. В. Амирханов

Объединённый институт ядерных исследований

Автор, ответственный за переписку.
Email: camir@jinr.ru

Candidate of Physical and Mathemati- cal Sciences, head of the group of Methods for Solving Mathematical Physics Problems of Laboratory of Information Technologies (LIT)

ул. Жолио-Кюри, д. 6, Дубна, Московская область, Россия, 141980

И. С. Колосова

Российский университет дружбы народов

Email: i.se.kolosova@gmail.com

PhD’s degree student of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

С. А. Васильев

Российский университет дружбы народов

Email: vasilyev-sa@rudn.ru

Candidate of Physical and Mathematical Sciences, assistant professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Список литературы

  1. A. A. Atanasov and A. T. Marinov, “ℏ-Expansion for bound states described by the relativistic three-dimensional two-particle quasi-potential equation,” Theoretical and Mathematical Physics, vol. 129, no. 1, pp. 1400-1407, 2001. doi: 10.1023/A:1012423629038.
  2. Y. D. Chernichenko, “On a solution of the relativistic inverse problem for the sum of nonlocal separable quasipotentials,” Russian Physics Journal, vol. 55, no. 6, pp. 699-711, 2012. doi: 10.1007/s11182-012-9869-3.
  3. V. G. Kadyshevsky, R. M. Mir-Kasimov, and N. B. Skachkov, “Quasipotential Approach and the Expansion in Relativistic Spherical Functions,” Nuovo Cimento A, vol. 55, no. 2, pp. 233-257, 1968. DOI: 10.1007/ BF02759225.
  4. V. G. Kadyshevsky and M. Mateev, “On a Relativistic Quasipotential Equation in the Case of Particles with Spin,” Nuovo Cimento A, vol. 55, no. 2, pp. 275-300, 1968. doi: 10.1007/BF02759227.
  5. V. G. Kadyshevsky, “Quasipotential type equation for the relativistic scattering amplitude,” Nuclear Physics, no. 1, pp. 125-148, 1968.
  6. A. A. Logunov and A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory,” Nuovo Cimento, vol. 29, pp. 380-399, 1963. doi: 10.1007/BF02750359.
  7. A. A. Logunov and A. N. Tavkhelidze, “Quasi-potential character of the scattering amplitude,” Nuovo Cimento, vol. 30, pp. 134-142, 1963. doi: 10.1007/BF02750754.
  8. A. A. Logunov, A. N. Tavkhelidze, and O. A. Khrustalev, “Quasipotential character of the Mandelstam representation,” Physics Letters, vol. 4, no. 6, pp. 325-326, 1963.
  9. V. A. Matveev, V. I. Savrin, A. N. Sissakian, and A. N. Tavkhelidze, “Relativistic Quark Models in the Quasipotential Approach,” Theoretical and Mathematical Physics, vol. 132, no. 2, pp. 1119-1136, 2002. doi: 10.1023/A:1019704709192.
  10. A. Pokraka and R. Dick, “Dimensional effects on the density of states in systems with quasi-relativistic dispersion relations and potential wells,” Canadian Journal of Physics, vol. 94, no. 8, pp. 773-779, 2016. doi: 10.1139/cjp-2015-0758.
  11. K. A. Sveshnikov and P. K. Silaev, “Quasi-exact solution of a relativistic finite-difference analogue of the Schrödinger equation for a rectangular potential well,” Theoretical and Mathematical Physics, vol. 132, no. 3, pp. 408-433, 2002. doi: 10.1023/A:1020220104534.
  12. K. A. Sveshnikov and P. K. Silaev, “Quasi-exact solution of the problem of relativistic bound states in the (1+1)-dimensional case,” Theoretical and Mathematical Physics, vol. 149, no. 3, pp. 1665-1689, 2006. doi: 10.1007/s11232-006-0150-1.
  13. V. S. Minh, E. P. Zhidkov, and V. G. Kadyshevsky, “Solutions of relativistic radial quasipotential equations,” Theoretical and Mathematical Physics, vol. 63, no. 2, pp. 493-503, 1985. doi: 10.1007/BF01017906.
  14. I. V. Amirkhanov, E. P. Zhidkov, I. E. Zhidkova, and S. A. Vasilyev, “Construction of an asymptotic approximation of eigenfunctions and eigenvalues of a boundary value problem for the singular perturbed relativistic analog of the Schrödinger equation with an arbitrary potential [Asimptotika sobstvennyh funkcij i sobstvennyh znachenij kraevoj zadachi dlya singulyarno vozmushchennogo relyativistskogo analoga uravneniya Schrödingera pri proizvol’nom potenciale],” Mathematical Models and Computer Simulations [Matematicheskoe modelirovanie], vol. 15, no. 9, pp. 3-16, 2003, in Russian.
  15. I. V. Amirkhanov, E. P. Zhidkov, D. Z. Muzafarov, N. R. Sarker, I. Sarhadov, and Z. A. Sharipov, “Investigation of boundary-value problems for the singular perturbed differential equation of high order [Issledovanie kraevyh zadach dlya singulyarno-vozmushchennogo differencial’nogo uravneniya vysokogo poryadka],” Mathematical Models and Computer Simulations [Matematicheskoe modelirovanie], vol. 19, no. 11, pp. 65-79, 2007, in Russian.
  16. I. V. Amirkhanov, N. R. Sarker, I. Sarhadov, Z. K. Tukhliev, and A. Sharipov, “Analytical and Computational Investigations of Solutions of Boundary-Value Problems for the Quasipotential Equation [Analiticheskoe i chislennoe issledovaniya reshenij kraevyh zadach dlya kvazipotencial’nogo uravneniya],” Bulletin of Peoples’ Friendship University of Russia. Series Mathematics. Information Sciences. Physics [Vestnik Rossijskogo universiteta druzhby narodov. Seriya: Matematika, informatika, fizika], no. 4, pp. 44-52, 2012, in Russian.
  17. V. O. Galkin, R. N. Faustov, and D. Ebert, “Logunov-Tavkhelidze equation in the relativistic quark model,” Theoretical and Mathematical Physics, vol. 191, no. 2, pp. 641-648, 2017. DOI: 10. 1134/S0040577917050038.
  18. N. Alam and S. Mandal, “On the quantum phase fluctuations of coherent light in a chain of two anharmonic oscillators coupled through a linear one,” Optics Communications, vol. 366, pp. 340-348, 2016. DOI: 10. 1016/j.optcom.2016.01.019.
  19. Z. Chen, “Mapping quantum many-body system to decoupled harmonic oscillators: general discussions and examples,” Physics Letters A, vol. 382, no. 37, pp. 2613-2617, 2018. doi: 10.1016/j.physleta.2018.07.043.
  20. E. P. Zhidkov, V. G. Kadyshevsky, and Y. V. Katyshev, "Problem of the c→∞ limit in the relativistic Schrodinger equation," Theoretical and Mathematical Physics, vol. 3, no. 2, pp. 443-446, 1970. doi: 10.1007/BF01046508.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».