О возможности усреднения релятивистских уравнений движения электрона в поле мощного лазерного излучения

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрена проблема усреднения релятивистских уравнений движения электрона в поле мощного лазерного излучения, вызванная уменьшением скорости изменения фазы волны из-за эффекта Доплера. Вследствие этого фаза может перейти из числа «быстрых» в число «медленных» переменных движения, так что усреднение по фазе становится невозможным. На основе общих принципов метода усреднения проведён анализ условий, при которых допустимо усреднение уравнений движения по «быстрой» фазе излучения. Лазерное излучение рассматривается в параксиальном приближении, в котором малым параметром является отношение сужения лазерного пучка к рэлеевской длине. Предполагается, что протяжённость импульса сопоставима с порядком сужения лазерного пучка. В этом случае необходимо учитывать поправки первого порядка к векторам поля лазерного импульса. Получен общий критерий, определяющий возможность усреднения релятивистских уравнений движения частицы в поле мощного лазерного излучения. Показано, что усреднённое описание релятивистского движения электрона возможно в случае достаточно умеренной (релятивистской) интенсивности и относительно широких лазерных пучков. Известный в литературе аналогичный критерий был получен ранее на основе численных расчётов.

Об авторах

В. П. Милантьев

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: milantiev-vp@rudn.ru
ORCID iD: 0000-0003-4686-4229

Doctor of Physical and Mathe- matical Sciences, Professor of Institute of Physical Research and Technology

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. H. Boot and R.-S. Harvie, “Charged particles in a non-uniform radiofrequency field,” Nature, vol. 180, p. 1187, 1957. doi: 10.1038/1801187a0.
  2. A. Gaponov and M. Miller, “Use of moving high-frequency potential wells for the acceleration of charged particles,” Soviet Physics JETP-USSR, vol. 7, pp. 515-516, 1958.
  3. T. Kibble, “Mutual refraction of electrons and photons,” Physical Review, vol. 150, p. 1060, 1966. doi: 10.1103/PhysRev.150.1060.
  4. D. R. Bituk and M. V. Fedorov, “Relativistic ponderomotive forces,” JETP, vol. 89, pp. 640-646, 4 1999. doi: 10.1134/1.559024.
  5. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Reviews of Modern Physics, vol. 78, p. 309, 2006. DOI: 10.1103/ RevModPhys.78.309.
  6. N. M. Naumova, J. A. Nees, and G. A. Mourou, “Relativistic attosecond physics,” Physics of Plasmas, vol. 12, p. 056 707, 2005. DOI: 10.1063/1. 1880032.
  7. A. V. Korzhimanov et al., “Horizons of petawatt laser technology,” Physics-Uspekhi, vol. 54, p. 9, 2011. doi: 10.3367/UFNe.0181.201101c. 0009.
  8. C. Danson, D. Hillier, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Science and Engineering, vol. 3, 2015. doi: 10.1017/hpl.2019.36.
  9. L. W. Davis, “Theory of electromagnetic beams,” Physical Review A, vol. 19, pp. 1177-1179, 3 1979. doi: 10.1103/PhysRevA.19.1177.
  10. B. Quesnel and P. Mora, “Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum,” Physical Review E, vol. 58, pp. 3719-3732, 3 1998. doi: 10.1103/PhysRevE.58.3719.
  11. G. V. Stupakov and M. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Physical Review Letters, vol. 86, p. 5274, 2001. doi: 10.1103/PhysRevLett. 86.5274.
  12. W. Wang, J. Xia L.and Xiong, H. Fang Z.and An, Z. Xie, W. Pei, and S. Fu, “Field shaping and electron acceleration by center-depressed laser beams,” Physics of Plasmas, vol. 26, p. 093 109, 2019. DOI: 10.1063/1. 5099508.
  13. V. P. Milant’ev, S. P. Karnilovich, and Y. N. Shaar, “Description of high-power laser radiation in the paraxial approximation,” Quantum Electronics, vol. 45, pp. 1063-1068, 11 2015. doi: 10.1070/QE2015V045N11ABEH015800.
  14. S. G. Bochkarev and V. Y. Bychenkov, “Acceleration of electrons by tightly focused femtosecond laser pulses,” Quantum Electronics, vol. 37, pp. 273-284, 3 2007. doi: 10.1070/QE2007v037n03ABEH013462.
  15. E. Startsev and C. McKinstrie, “Multiple scale derivation of the relativistic ponderomotive force,” Physical Review E, vol. 55, p. 7527, 1997. doi: 10.1103/PhysRevE.55.7527.
  16. P. Mora and J. T. M. Antonsen, “Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas,” Physics of Plasmas, vol. 4, pp. 217-229, 1997. doi: 10.1063/1.872134.
  17. Y. I. Salamin, G. R. Mocken, and C. H. Keitel, “Electron scattering and acceleration by a tightly focused laser beam,” Physical Review Special Topics-Accelerators and Beams, vol. 5, p. 101 301, 2002. doi: 10.1103/PhysRevSTAB.5.101301.
  18. P. Wang et al., “Characteristics of laser-driven electron acceleration in vacuum,” Journal of Applied Physics, vol. 91, pp. 856-866, 2002. doi: 10.1063/1.1423394.
  19. A. Galkin, V. Korobkin, M. Y. Romanovsky, and O. Shiryaev, “Dynamics of an electron driven by relativistically intense laser radiation,” Physics of Plasmas, vol. 15, p. 023 104, 2008. doi: 10.1063/1.2839349.
  20. D. Bauer, P. Mulser, and W. H. Steeb, “Relativistic ponderomotive force, uphill acceleration and transition to chaos,” Physical Review Letters, vol. 75, pp. 4622-4625, 25 1995. doi: 10.1103/PhysRevLett.75.4622.
  21. I. Y. Dodin, N. J. Fisch, and G. M. Fraiman, “Drift lagrangian for a relativistic particle in an intense laser field,” Journal of Experimental and Theoretical Physics Letters, vol. 78, pp. 202-206, 2003. DOI: 10. 1134/1.1622032.
  22. N. B. Narozhny and M. S. Fofanov, “Scattering of relativistic electrons by a focused laser pulse,” JETP, vol. 90, pp. 753-768, 5 2000. doi: 10.1134/1.559160.
  23. A. J. Castillo and V. P. Milant’ev, “Relativistic ponderomotive forces in the field of intense laser radiation,” Technical Physics, vol. 59, pp. 1261-1266, 9 2014. doi: 10.1134/S1063784214090138.
  24. V. P. Milant’ev and A. J. Castillo, “On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation,” JETP, vol. 116, pp. 558-566, 4 2013. doi: 10.1134/S1063776113040067.
  25. N. N. Bogoljubov and Y. A. Mitropolskij, Asymptotic methods in the theory of nonlinear oscillations. New York: CRC Press, 1961, vol. 10, p. 537. doi: 10.1007/BF01056172.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».