Спинорное поле в сферически симметричной Вселенной Фридмана

Обложка

Цитировать

Полный текст

Аннотация

В последние годы спинорное поле используется многими авторами для решения некоторых актуальных вопросов современной космологии. Мотив использования спинорного поля в качестве источника гравитационного поля заключается в том, что спинорное поле может не только описывать различные этапы эволюции Вселенной, но и моделировать различные типы вещества, такие как идеальная жидкость и темная энергия. Кроме того, спинорное поле очень чувствительно к гравитационному, и в зависимости от гравитационного поля спинорное поле может реагировать по-разному, изменяя тем самым геометрию пространствавремени. В настоящей работе дается краткое описание нелинейного спинорного поля в модели Фридмана-Леметра-Робертсона-Уолкера (FLRW). Результаты сравниваются в декартовых и сферических координатах. Показано, что при переходе от декартовых координат к сферическим тензор энергии-импульса имеет дополнительные ненулевые недиагональные компоненты, которые могут накладывать ограничения как на спинорные функции, так и на метрические.

Об авторах

Биджан Саха

Российский университет дружбы народов; Объединённый институт ядерных исследований

Автор, ответственный за переписку.
Email: bijan64@mail.ru

Институт физических исследований и технологий; Лаборатория информационных технологий

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия; ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Е. И. Захаров

Российский университет дружбы народов

Email: zakharov.eugene1998@gmail.com

Институт физических исследований и технологий

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В. С. Рихвицкий

Объединённый институт ядерных исследований

Email: rqvtsk@mail.ru

Лаборатория информационных технологий

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Список литературы

  1. B. Saha and G. N. Shikin, “Interacting Spinor and Scalar Fields in Bianchi Type I Universe Filled with Perfect Fluid: Exact Self-consistent Solutions,” General Relativity and Gravitation, vol. 29, pp. 1099-1112, 1997. doi: 10.1023/a:1018887024268.
  2. B. Saha and G. N. Shikin, “Nonlinear Spinor Field in Bianchi type-I Universe filled with Perfect Fluid: Exact Self-consistent Solutions,” Journal of Mathematical Physics, vol. 38, pp. 5305-5318, 1997. doi: 10.1063/1.531944.
  3. B. Saha, “Spinor field in Bianchi type-I Universe: regular solutions,” Physical Review D, vol. 64, p. 123501, 2001. doi: 10.1103/physrevd. 64.123501.
  4. B. Saha, “Nonlinear Spinor Field in cosmology,” Physical Review D, vol. 69, p. 124006, 2004. doi: 10.1103/physrevd.69.124006.
  5. B. Saha and T. Boyadjiev, “Bianchi type-I cosmology with scalar and spinor fields,” Physical Review D, vol. 69, p. 124010, 2004. DOI: 10. 1103/physrevd.69.124010.
  6. B. Saha, “Spinor fields in Bianchi type-I Universe,” Physics of Particlesand Nuclei., vol. 37, S13-S44, 2006. DOI: 10. 1134 / s1063779606070021.
  7. N. J. Popławski, “Nonsingular, big-bounce cosmologyfrom spinor-torsion coupling,” Physical Review D, vol. 85, p. 107502, 2012. DOI: 10.1103/ physrevd.85.107502.
  8. M. O. Ribas, F. P. Devecchi, and G. M. Kremer, “Fermions as sources of accelerated regimes in cosmology,” Physical Review D, vol. 72, p. 123502, 2005. doi: 10.1103/physrevd.72.123502.
  9. B. Saha, “Nonlinear spinor field in Bianchi type-I cosmology: inflation,isotropization, and late time acceleration,” Physical Review D, vol. 74, p. 124030, 2006. doi: 10.1103/physrevd.74.124030.
  10. B. Saha, “Spinor field and accelerated regimes in cosmology,” Gravitation & Cosmology, vol. 12, no. 46-47, pp. 215-218, 2006.
  11. B. Saha, “Nonlinear spinor field in Bianchi type-???? cosmology: accelerated regimes,” Romanian Reports in Physics, vol. 59, pp. 649-660, 2007. arXiv: gr-qc/0608047.
  12. B. Saha, “Early inflation, isotropization and late-time acceleration of a Bianchi type-I universe,” Physics of Particles and Nuclei, vol. 40, pp. 656-673, 2009. doi: 10.1134/s1063779609050037.
  13. N. J. Popławski, “Big bounce from spin and torsion,” General Releativity and Gravitation, vol. 44, p. 1007, 2012. doi: 10.1007/s10714-0111323-2.
  14. N. J. Popławski, “Nonsingular Dirac particles in spacetime with torsion,” Physics Letters B, vol. 690, pp. 73-77, 2010. doi: 10.1016/j.physletb. 2010.04.073.
  15. L. Fabbri, “A Discussion on Dirac Field Theory, No-Go Theorems and Renormalizability,” International Journal of Theoretical Physics, vol. 52, pp. 634-643, 2013. doi: 10.1007/s10773-012-1370-9.
  16. L. Fabbri, “Conformal gravity with the most general ELKO matter,” Physical Review D., vol. 85, p. 047502, 2012. doi: 10.1103/physrevd. 85.047502.
  17. S. Vignolo, L. Fabbri, and R. Cianci, “Dirac spinors in Bianchi-I f(R)cosmology with torsion,” Journal of Mathematical Physics, vol. 52, p. 112502, 2011. doi: 10.1063/1.3658865.
  18. B. Saha, “Nonlinear Spinor Fields in Bianchi type-I spacetime: Problems and Possibilities,” Astrophysics and Space Science, vol. 357, p. 28, 2015. doi: 10.1007/s10509-015-2291-x.
  19. B. Saha, “Spinor field nonlinearity and space-time geometry,” Physics of Particles and Nuclei, vol. 49, no. 2, pp. 146-212, 2018. DOI: 10.1134/ s1063779618020065.
  20. B. Saha, “Non-minimally coupled nonlinear spinor field in Bianchi type-I cosmology,” European Physical Journal - Plus, vol. 134, p. 419, 2019. doi: 10.1140/epjp/i2019-12859-7.
  21. R. Cianci, L. Fabbri, and S. Vignolo, “Exact solutions for Weyl fermions with gravity,” European Physical Journal - Plus, vol. 75, p. 478, 2015. doi: 10.1140/epjc/s10052-015-3698-9.
  22. K. A. Bronnikov, Y. P. Rybakov, and B. Saha, “Spinor fields in spherical symmetry. Einstein-Dirac and other space-time,” European Physical Journal - Plus, vol. 135, p. 124, 2020. doi: 10.1140/epjp/s13360-02000150-z.
  23. B. Saha, “Spinor fields in spherically symmetric space-time,” European Physical Journal - Plus, vol. 133, p. 416, 2018. doi: 10.1140/epjp/ i2018-12273-9.
  24. B. Saha, “Spinor Field Nonlinearity and Space-Time Geometry,” Physics of Particles and Nuclei, vol. 49, no. 2, pp. 146-212, 2018. DOI: 10.1134/ S1063779618020065.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».