Выявление факторов распространения COVID-19 в Европе на основе причинно-следственного анализа медицинских вмешательств и социально-экономических данных

Обложка

Цитировать

Полный текст

Аннотация

С момента появления COVID-19 было получено огромное количество данных, помогающих понять, как развивался и распространялся вирус. Анализ таких данных помогает получить новые знания, необходимые для контроля за развитием эпидемии и предоставить лицам, принимающим решения, инструменты для принятия эффективных мер по сдерживанию эпидемии и минимизации социальных последствий. Анализу влияния медицинских методов лечения и социально-экономических факторов на передачу коронавируса было уделено много внимания. В этой работе мы применяем панельное авторегрессионное моделирование с распределённым запаздыванием (ARDL) к данным Европейского союза для выявления факторов распространения COVID-19 в Европе. Наш анализ показал, что немедикаментозные меры были успешными в снижении смертности, а строгость изоляции, политика тестирования на вирус и механизмы защиты пожилых людей оказывают положительное влияние на сдерживание эпидемии. Результаты панельных тестов попарной причинноследственной связи Думитреску-Херлина показывают, что для всех стран Евросоюза существует двунаправленная причинно-следственная связь между новыми смертями и факторами фармакологического вмешательства и что, с другой стороны, некоторые социально-экономические факторы вызывают новые смерти, когда обратное неверно.

Об авторах

К. А. Бру

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: broureino@gmail.com
ORCID iD: 0000-0003-1996-577X

PhD student of Information Technology Department

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. S. L. Priyadarsini and M. Suresh, “Factors influencing the epidemiological characteristics of pandemic COVID 19: a TISM approach,” International Journal of Healthcare Management, vol. 13, no. 2, pp. 89- 98, 2020. doi: 10.1080/20479700.2020.1755804.
  2. A. Farseev, Y.-Y. Chu-Farseeva, Q. Yang, and D. B. Loo, “Understanding economic and health factors impacting the spread of covid-19 disease,” medRxiv, 2020. doi: 10.1101/2020.04.10.20058222. eprint: https://www.medrxiv.org/content/early/2020/06/09/2020.04.10.20058222.full.pdf.
  3. K. Tantrakarnapa, B. Bhopdhornangkul, and K. Nakhaapakorn, “Influencing factors of COVID-19 spreading: a case study of Thailand,” Journal of Public Health, vol. 30, pp. 621-627, 2020. doi: 10.1007/s10389-02001329-5.
  4. W.-X. Tang, H. Li, M. Hai, and Y. Zhang, “Causal Analysis of Impact Factors of COVID-19 in China,” Procedia Computer Science, vol. 199, no. 10229, pp. 1483-1489, 2022. doi: 10.1016/j.procs.2022.01.189.
  5. R. Chaudhry, G. Dranitsaris, T. Mubashir, J. Bartoszko, and S. Riazi, “A country level analysis measuring the impact of government actions, country preparedness and socioeconomic factors on COVID-19 mortality and related health outcomes,” eClinical Medicine, vol. 25, p. 100464, 2020. doi: 10.1016/j.eclinm.2020.100464.
  6. A. Levin, C.-F. Lin, and C.-S. J. Chu, “Unit root tests in panel data: asymptotic and finite-sample properties.,” Journal of Econometrics, vol. 108 (1), pp. 1-24, 2002. doi: 10.1016/S0304-4076(01)00098-7.
  7. M. H. Pesaran, T. Schuermann, and S. M. Weiner, “Modeling regional interdependencies using a global error-correcting macroeconometric model,” Journal of Business & Economic Statistics, vol. 22, pp. 129-162, 2004. doi: 10.1198/073500104000000019.
  8. M. Pesaran, Y. Shin, and R. J. Smith, “Bound Testing Approaches to the Analysis of Level Relationship.,” Journal of Applied Econometrics. Special Issue: In Memory of John Denis Sargan 1924-1996: Studies in Empirical Macroeconometrics, vol. 16, no. 3, pp. 289-326, 2001. doi: 10.1002/JAE.616.
  9. M. P. Clements and D. F. Hendry, “Forecasting in cointegrated systems,” Applied Econometrics, vol. 10, pp. 127-146, 1995. doi: 10.1002/jae.3950100204.
  10. S. Johansen, “Statistical analysis of cointegration vectors,” Journal of Economic Dynamics and Control, vol. 12, no. 2-3, pp. 231-254, 1988. doi: 10.1016/0165-1889(88)90041-3.
  11. R. Engle and C. Granger, “ Cointegration and Error Correction: Representation, Estimation and Testing.,” Econometrica, vol. 55, no. 2, pp. 251-276, 1987. doi: 10.2307/1913236.
  12. E.-I. Dumitrescu and C. Hurlin, “Testing for Granger non-causality in heterogeneous panels,” Economic Modelling, vol. 29, pp. 1450-1460, 2012. doi: 10.1016/j.econmod.2012.02.014.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».