Численное моделирование холодной эмиссии в коаксиальном диоде с магнитной изоляцией

Обложка

Цитировать

Полный текст

Аннотация

В связи с появлением и активным развитием новых областей применения мощных и сверхмощных электровакуумных приборов СВЧ возрос интерес к изучению особенностей поведения ансамблей заряженных частиц, движущихся в пространстве взаимодействия. Примером является пучок электронов, формируемый в коаксиальном диоде с магнитной изоляцией. Численное моделирование эмиссии в таком диоде традиционно проводится с помощью методов типа «частица в ячейке». Они основаны на одновременном расчете уравнений движения частиц и уравнений Максвелла для электромагнитного поля. В данной работе предложен новый вычислительный подход, названный методом точечных макрочастиц. В нем движение частиц описывается уравнениями релятивистской механики, а для полей выписываются явные выражения в квазистатическом приближении. Выполнены расчеты формирования релятивистского электронного пучка в коаксиальном диоде с магнитной изоляцией и проведено сравнение с известными теоретическими соотношениями для скорости электронов в пучке и для тока пучка. Получено отличное согласование результатов расчета с теоретическими формулами.

Об авторах

А. А. Белов

Московский государственный университет им. М.В. Ломоносова; Российский университет дружбы народов

Автор, ответственный за переписку.
Email: aa.belov@physics.msu.ru
ORCID iD: 0000-0002-0918-9263

Candidate of Physical and Mathematical Sciences, Researcher of Faculty of Physics, M. V. Lomonosov Moscow State University; Assistant professor of Department of Applied Probability and Informatics of Peoples’ Friendship University of Russia

Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия; ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

О. Т. Лоза

Российский университет дружбы народов

Email: loza-ot@rudn.ru
ORCID iD: 0000-0003-4676-6303

Doctor of Physical and Mathematical Sciences, Professor of Institute of Physical Research and Technology

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

К. П. Ловецкий

Российский университет дружбы народов

Email: lovetskiy-kp@rudn.ru
ORCID iD: 0000-0002-3645-1060

Candidate of Physical and Mathematical Sciences, Associate professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

С. П. Карнилович

Российский университет дружбы народов

Email: karnilovich-sp@rudn.ru
ORCID iD: 0000-0001-5696-1546

Candidate of Physical and Mathematical Sciences, Assistant professor of Institute of Physical Research and Technology

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Л. А. Севастьянов

Российский университет дружбы народов

Email: sevastianov-la@rudn.ru
ORCID iD: 0000-0002-1856-4643

Doctor of Physical and Mathematical Sciences, Professor of Department of Applied Probability and Informatics

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Список литературы

  1. M. V. Kuzelev et al., “Plasma relativistic microwave electronics,” Plasma Physics Reports, vol. 27, no. 8, pp. 669-691, 2001. doi: 10.1134/1.1390539.
  2. S. P. Bugaev, E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskii, “Explosive emission of electrons,” Physics Uspekhi, vol. 18, no. 1, pp. 51-61, 1975. doi: 10.3367/UFNr.0115.197501d.0101.
  3. O. T. Loza and I. E. Ivanov, “Measurements of the transverse electron velocities in high-current microsecond relativistic electron beams in a strong magnetic field,” Technical Physics, vol. 48, no. 9, pp. 1180-1185, 2003. doi: 10.1134/1.1611905.
  4. D. K. Ul’yanov et al., “Controlling the radiation frequency of a plasma relativistic microwave oscillator during a nanosecond pulse,” Technical Physics, vol. 58, no. 10, pp. 1503-1506, 2013. doi: 10.1134/S1063784213100265.
  5. S. Y. Belomyttsev, A. A. Grishkov, S. D. Korovin, and V. V. Ryzhov, “The current of an annular electron beam with virtual cathode in a drift tube,” Technical Physics Letters, vol. 29, no. 7, pp. 666-668, 2003. doi: 10.1134/1.1606783.
  6. S. V. Polyakov, “Mathematical modeling using multiprocessor computing systems of electronic transport processes in vacuum and solid-state micro- and nanostructures [Matematicheskoye modelirovaniye s pomoshchʹyu nogoprotsessornykh vychislitelʹnykh sistem protsessov elektronnogo transporta v vakuumnykh i tverdotelʹnykh mikro- i nanostrukturakh],” in Russian, Diss.. Doctor of Physical and Mathematical Sciences, M. V. Keldysh IAM, RAS, 2010.
  7. A. A. Vlasov, “The vibrational properties of an electron gas,” Physics Uspekhi, vol. 10, no. 6, pp. 721-733, 1968. doi: 10.3367/UFNr.0093.196711f.0444.
  8. I. A. Kvasnikov, Thermodynamics and statistical physics. Vol. 3. Theory of nonequilibrium systems [Termodinamika i statisticheskaya fizika, Tom 3, Teoriya ravnovesnykh sistem, Teoriya neravnovesnykh sistem]. Moscow: URSS, 2003, in Russian.
  9. R. W. Hockney and J. W. Eastwood, Computer simulation using particles. McGraw-Hill Inc., 1981.
  10. V. P. Tarakanov, User’s Manual for Code KARAT. Va, USA: BRA Inc., 1992.
  11. L. V. Borodachev, “Discrete modeling of low-frequency processes in plasma [Diskretnoye modelirovaniye nizkochastotnykh protsessov v plazme],” in Russian, Diss.. Doctor of Physical and Mathematical Sciences, M. V. Lomonosov MSU, 2012.
  12. V. V. Andreev et al., Physical electronics and its modern applications [Fizicheskaya elektronika i yeye sovremennyye prilozheniya]. Moscow: RUDN University, 2008, in Russian.
  13. S. E. Ernyleva, V. O. Litvin, O. T. Loza, and I. L. Bogdankevich, “Promising source of high-power broadband microwave pulses with radiation frequency variable up to two octaves,” Technical Physics, vol. 59, no. 8, pp. 1228-1232, 2014. doi: 10.1134/S1063784214080106.
  14. F. Hecht, “New development in FreeFem++,” Journal of numerical mathematics, vol. 20, no. 3-4, pp. 251-266, 2012. doi: 10.1515/jnum2012-0013.
  15. V. I. Denisov, Introduction to electrodynamics of material media [Vvedeniye v elektrodinamiku materialʹnykh sred]. Moscow: M. V. Lomonosov MSU, 1989, in Russian.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».