Liquid radial flows with a vortex through porous media

封面

如何引用文章

全文:

详细

The filtration process is studied for a popular class of filters with radial cartridges that proved their high effectiveness in purification of water. The mass balance equation for radial flows in porous media is obtained by using the lattice approximation method, the transverse diffusion process being taken into account. The Euler dynamical equations are modified by including the Darcy force proportional to the velocity of the filtration flow. The system of equations is written for the stationary axially symmetric radial flow and solved by the perturbation method, if the vertical velocity is supposed to be small.

作者简介

Yuri Rybakov

RUDN University

Email: rybakov-yup@rudn.ru
ORCID iD: 0000-0002-7744-9725
Scopus 作者 ID: 16454766600
Researcher ID: S-4813-2018

Professor, Doctor of Sciences in Physics and Mathematics, Professor at the Institute of Physical Research and Technologies

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

Natalia Semenova

RUDN University

编辑信件的主要联系方式.
Email: semenova-nv@rudn.ru
ORCID iD: 0000-0001-6894-6255
Scopus 作者 ID: 57200754585
Researcher ID: AAC-8298-2020

Junior member of teaching at the Institute of Physical Research and Technologies

6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

参考

  1. Bear, J. Dynamics of Fluids in Porous Media (Dover Publications, Mineola, 1988).
  2. Cheremisinof, N. P. & Azbel, D. S. Liquid Filtration (Butterworth-Heinemann, Boston, 1998).
  3. Pinder, G. F. & Gray, W. G. Essentials of Multiphase Flow and Transport in Porous Media (John Wiley & Sons, New York, 2008).
  4. Dullien, F. A. L. Porous Media: Fluid Transport and Pore Structure (Academic Press, San Diego, 2012).
  5. Kim, S. & Karila, S. J. Microhydrodynamics: Principles and Selected Applications (John Wiley & Sons, Boston, York, 1991).
  6. Sahimi, M. Flow and Transport in Porous Media and Fractional Rock (John Wiley & Sons, New York, 2011).
  7. Sheidegger, A. E. The Physics of Flow through Porous Media (MacMillan, New York, 1960).
  8. Sheidegger, A. E. Statistical hydrodynamics in porous media. Journal of Applied Physics 25, 997 (1964).
  9. Vafai, K. Handbook of Porous Media (CRC Press, Taylor & Francis Group, Boca Raton, 2015).
  10. Polubarinova-Kochina, P. Y. & Falcovich, S. V. Theory of fluid filtration in porous media. Applied Mathematics and Mechanics 11, 629 (1947).
  11. Frog, B. N. & Levchenko, A. P. Water Purification (Moscow State University Publishing, Moscow, 1996).
  12. Fara, H. D. & Sheidegger, A. E. Statistical geometry of porous media. Journal of Geophysical Research 66, 3279 (1961).
  13. Harlemaii, D. R. F. & Rumer, R. R. Longitudinal and lateral dispersion in an isotropic porous medium. Journal of Fluid Mechanics 16, 385 (1963).
  14. Josselin de Jong, G. Longitudinal and transverse diffusion in granular deposits. Transactions of American Geophysical Union 39, 67 (1958).
  15. Saffman, P. G. A theory of dispersion in a porous media. Journal of Fluid Mechanics 6, 321 (1959).
  16. Sheidegger, A. E. General theory of dispersion in porous media. Journal of Geophysical Research 66, 3273 (1961).
  17. Darcy, H. Les Fontaines Publiques de la Ville de Dijon French (Dalmont, Paris, 1856).
  18. Polubarinova-Kochina, P. Y. Theory of Ground Water Movement (Princeton University Press, Princeton, 1960).
  19. Rybakov, Y. P., Semenova, N. V. & Safarov, J. S. Generalizing Darcy’s law for filtration radial flows. IOP Conference Series: Materials Science and Engineering 675, 012064 (2019).
  20. Whitaker, S. The equations of motion in porous media. Chemical Engineering Science 21, 291 (1966).
  21. Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transport in porous media 1, 3 (1986).
  22. Olsen, H. W. Deviations from Darcy’s law in saturated clays in Proceedings of Soil Scientific Society of America 29 (1965), 135.
  23. Firdaouss, M. et al. Nonlinear corrections to Darcy’s law at low Reynolds numbers. Journal of Fluid Mechanics 343, 331 (1997).
  24. Leva, M. Fluidization (McGraw-Hill, New York, Toronto, London, 1959).
  25. Xu, C. C. & Zhu, J. Prediction of the minimal fluidization velocity for fine particles of various degrees of cohesiveness. Chemistry Engineering Communications 196, 499 (2008).

补充文件

附件文件
动作
1. JATS XML