On calculating the dimension of invariant sets of dynamic systems
- Autores: Kadrov V.M.1, Malykh M.D.1,2
-
Afiliações:
- RUDN University
- Joint Institute for Nuclear Research
- Edição: Volume 33, Nº 4 (2025)
- Páginas: 404-410
- Seção: Modeling and Simulation
- URL: https://journal-vniispk.ru/2658-4670/article/view/356902
- DOI: https://doi.org/10.22363/2658-4670-2025-33-4-404-410
- EDN: https://elibrary.ru/HSZAJF
- ID: 356902
Citar
Texto integral
Resumo
This work investigates numerical approaches for estimating the dimension of invariant sets onto which the trajectories of dynamic systems ``wind'', with a focus on fractal and correlation dimensions. While the classical fractal dimension becomes computationally challenging in spaces of dimension greater than two, the correlation dimension offers a more efficient and scalable alternative. We develop and implement a computational method for evaluating the correlation dimension of large discrete point sets generated by numerical integration of differential equations. An analogy is noted between this approach and the Richardson--Kalitkin method for estimating the error of a numerical method. The method is tested on two representative systems: a conservative system whose orbit lies on a two-dimensional torus, and the Lorenz system, a canonical example of a chaotic flow with a non-integer attractor dimension. In both cases, the estimated correlation dimensions agree with theoretical predictions and previously reported results. The developed software provides an effective tool for analysing invariant manifolds of dynamical systems and is suitable for further studies, including those involving reversible difference schemes and high-dimensional systems.
Palavras-chave
Sobre autores
Viktor Kadrov
RUDN University
Email: vmkadrov@yandex.ru
ORCID ID: 0009-0008-9394-4874
Student of Department of Computational Mathematics and Artificial Intelligence
Rússia, 6 Miklukho-Maklaya St, Moscow, 117198, Russian FederationMikhail Malykh
RUDN University; Joint Institute for Nuclear Research
Autor responsável pela correspondência
Email: malykh-md@rudn.ru
ORCID ID: 0000-0001-6541-6603
Scopus Author ID: 6602318510
Researcher ID: P-8123-2016
DSc., Head of Department of Computational Mathematics and Artificial Intelligence of RUDN University;
Senior Researcher of Joint Institute for Nuclear Research
Bibliografia
- Malykh, M., Gambaryan, M., Kroytor, O. & Zorin, A. Finite Difference Models of Dynamical Systems with Quadratic Right-Hand Side. Mathematics 12, 167. doi: 10.3390/math12010167 (2024).
- Mandelbrot, B. B. The Fractal Geometry of Nature en (Henry Holt and Company, 1983).
- Rössler, O. E. Chaos in abstract kinetics: Two prototypes. Bulletin of Mathematical Biology 39, 275-289. doi: 10.1016/S0092-8240(77)80015-3 (1977).
- Thompson, J. M. T. Chaos, fractals and their applications.International Journal of Bifurcation and Chaos 26. Publisher: World Scientific, 1630035 (2016).
- Магницкий, Н. А. Теория динамического хаоса ru (УРСС, 2011).
- Kannathal, N., Acharya, U. R., Lim, C. & Sadasivan, P. Characterization of EEG-A comparative study.Computer Methods and Programs in Biomedicine 80, 17-23. doi: 10.1016/j.cmpb.2005.06.005 (2005).
- Broock, W. A., Scheinkman, J. A., Dechert, W. D. & LeBaron, B. A test for independence based on the correlation dimension. Econometric Reviews 15, 197-235. doi: 10.1080/07474939608800353. eprint: https://doi.org/10.1080/07474939608800353 (1996).
- Krakovská, A. Correlation Dimension Detects Causal Links in Coupled Dynamical Systems. Entropy 21. doi: 10.3390/e21090818 (2019).
- Liu, Z. Chaotic time series analysis. Mathematical Problems in Engineering 2010. doi: 10.1155/2010/720190 (Apr. 2010).
- Grassberger, P. & Procaccia, I. Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9, 189-208. doi: 10.1016/0167-2789(83)90298-1 (1983).
- JI, C., ZHU, H. & JIANG, W. Influence of sampling length and sampling interval on calculating the fractal dimension of chaotic attractors.International Journal of Bifurcation and Chaos 22, 1250145. doi: 10.1142/S0218127412501453 (2012).
- Kalitkin, N. N., Al’shin, A. B., Al’shina, E. A. & Rogov, B. V. Calculations on quasi-uniform grids In Russian (Fizmatlit, Moscow, 2005).
- Belov, A. A., Kalitkin, N. N. & Poshivaylo, I. P. Geometrically adaptive grids for stiff Cauchy problems. Doklady Mathematics 93, 112-116. doi: 10.1134/S1064562416010129 (2016).
- Belov, A. A. & Kalitkin, N. N. Nonlinearity Problem in the Numerical Solution of Superstiff Cauchy Problems. Mathematical Models and Computer Simulations 8, 638-650. doi: 10.1134/S2070048216060065 (2016).
- Belov, A. A., Kalitkin, N. N., Bulatov, P. & K., Z. E. Explicit methods for integrating stiff Cauchy problems. Doklady Mathematics 99, 230-234. doi: 10.1134/S1064562419020273 (2019).
- Baddour, A., Gambaryan, M., Gonzalez, L. & Malykh, M. D. On Implementation of Numerical Methods for Solving Ordinary Differential Equations in Computer Algebra Systems. Program.Comput. Soft. 49, 412-422. doi: 10.1134/S0361768823020044 (2023).
- Mori, H. & Fujisaka, H. Statistical Dynamics of Chaotic Flows. Progress of Theoretical Physics 63, 1931-1944. doi: 10.1143/PTP.63.1931. eprint: https://academic.oup.com/ptp/articlepdf/63/6/1931/5222197/63-6-1931.pdf (June 1980).
- Viswanath, D. V. K. The fractal property of the Lorenz attractor. Physica D: Nonlinear Phenomena 190, 115-128 (2004).
- Smith, L. A.Intrinsic limits on dimension calculations. Physics Letters A 133, 283-288. doi: 10.1016/0375-9601(88)90445-8 (1988).
- Nerenberg,M.A. H.&Essex, C. Correlation dimension and systematic geometric effects. Physical review. A, Atomic, molecular, and optical physics 42 12, 7065-7074 (1990).
Arquivos suplementares

