Индекс задач Соболева, ассоциированных с действием групп Ли

Обложка

Цитировать

Полный текст

Аннотация

Относительная эллиптическая теория или, как её назвал в своих работах Б.Ю. Стернин, «проблема Соболева», состоит в том, что в категории гладких пар многообразий (M,X), одно из которых X гладко вложено в другое M, построить фредгольмову эллиптическую теорию и найти формулу индекса для неё. С точки зрения (псевдо)дифференциальных уравнений задача Соболева состоит в том, что рассматривается сравнение Du ≡ f(modX), где D - псевдодифференциальный оператор, а символ « ≡» означает равенство левой и правой части с точностью до распределений сосредоточенных на подмногообразии X. Очевидно, в случае, когда размерность подмногообразия больше единицы, сравнение, о котором говорится выше, не определяет фредгольмов оператор, именно ядро этого сравнения является бесконечномерным. Оказывается, что если добавить к рассматриваемому сравнению ещё некоторые операторы B, определённые на подмногообразии X, связанные некоторым алгебраическим условием (типа коэрцитивности) с оператором D, то полученный оператор (D,B) уже будет фредгольмовым в соответствующих пространствах Соболева. Замечательным фактом при этом является то, что это условие может быть сформулировано инвариантным образом как условие эллиптичности некоторого оператора, индуцированного задачей на подмногообразии X и, таким образом, условия эллиптичности оператора D и оператора (D,B) вместе доставляют нам фредгольмов оператор. Эта теорема вместе с формулой индекса была в своё время доказана Б.Ю. Стерниным. Напомним, что все операторы, участвующие в построении указанной теории, были псевдодифференциальными. В частности, псевдодифференциальным был оператор (D,B), что, между прочим, и позволило дать определение его эллиптичности. Совершенно по другому обстоит дело в ситуации, когда на многообразии M имеется дополнительная структура, например, действие группы Ли. В этом случае оператор (D,B) уже не будет, вообще говоря, псевдодифферециальным оператором и, следовательно, вопрос о его эллиптичности, формально говоря, не может быть даже поставлен. Тем не менее, в нашей работе при определённых условиях мы можем изучить полученный оператор (D,B), дать определение его символа и доказать его фредгольмовость. Более того, мы предъявляем формулу индекса в этой более общей ситуации. Этому и посвящена настоящая работа.

Об авторах

Дарья Александровна Лощёнова

Российский университет дружбы народов

Email: darya.loshhenova.90@bk.ru
Кафедра прикладной математики

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».