Improving tools for predicting agricultural development: a combination of recurrent neural networks and multiple regression for regional analysis
- Authors: Samsonov A.V1
-
Affiliations:
- Kaliningrad State Technical University
- Issue: Vol 8, No 3 (2025)
- Pages: 428-443
- Section: ARTICLES
- URL: https://journal-vniispk.ru/2658-5286/article/view/378029
- ID: 378029
Cite item
Abstract
the article considers the urgent task of improving the accuracy and objectivity of forecasting the economic dynamics of the agro-industrial complex at the regional level. An algorithmized methodological approach developed by the author for combined medium-term forecasting of agricultural development indicators based on the combined use of recurrent neural networks (RNNW) with long-term short-term memory architecture (LSTM) and methods of correlation and regression analysis is presented and tested. The study was conducted on the example of the agro-industrial complex of the Kaliningrad region using statistical data for the period from 2000 to 2023. The advantage of the proposed approach is substantiated in terms of the limited statistical base and the relative simplicity of predictive calculations compared with traditional methods. The work details the stages of building a neural network model and multiple regression models for key indicators of agriculture and gross regional product. The analysis of the results revealed the polarization of the forecast estimates obtained by various tools, which allows for a more comprehensive understanding of possible development trajectories. The effectiveness of using a neural network apparatus for predicting the regional and sectoral dynamics of the agro-industrial complex is proved even with a limited amount of historical data. Conclusions about the expediency of using a combined approach to complement forecasts and increase their validity are formulated, as well as directions for further research are outlined.
References
- Балута В.И., Шульц Д.Н., Лавриненко П.А. Оценка влияния мировых цен на углеводороды на российскую экономику на основе DSGE-модели с фирмами-собственниками капитала // Проблемы прогнозирования. 2022. № 1(190). С. 147 – 161.
- Коваленко А.В., Казаковцева Е.В. Искусственный интеллект в экономике: монография. М.: Ай Пи Ар Медиа. 2022. 347 c.
- Лазарян С.С., Никонов И.В., Судаков С.С. Влияние учета несовершенств финансового рынка на прогнозную силу DSGE-модели российской экономики // Проблемы прогнозирования. 2024. № 4 (205). С. 88 – 101.
- Некрасов Ф.О. Использование методов машинного обучения в целях макроструктурного анализа и статистического учета // Экономическая политика России в межотраслевом и пространственном измерении. 2022. С. 45 – 49.
- Орлов А.И. Искусственный интеллект: cтатистические методы анализа данных: учебник. Москва: Ай Пи Ар Медиа, 2022. 843 c.
- Пархименко В.А. Опыт экспериментальной оценки матрицы коэффициентов импортных капитальных затрат в динамической модели Леонтьева для белорусской экономики в 2016-2020 годах // Проблемы прогнозирования. 2023. № 4 (199). С. 168 – 180.
- Торопцев Е.Л., Мараховский А.С. Анализ макроструктурной динамики в рамках методологии «затраты – выпуск» // Журнал Новой экономической ассоциации. 2022. № 1 (53). С. 12 – 30.
- Хайруллина О.И., Баянова О.В. Эконометрика: базовый курс: учебник. Пермь: ИПЦ «Прокростъ», 2019. 176 с.
- Bunsen J., Finkbeiner M. An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation // Sustainability. 2023. P. 15, 46.
- Gal? J., Monacelli T. Understanding the gains from wage flexibility: the exchange rate connection // American Economic Review. 2016. Vol. 106. № 12. P. 3829 – 3868.
- Oosterhaven J. Price re-interpretations of the basic IO quantity models result in the ultimate input-output equations // Economic Systems Research. 2024. Vol. 36. № 2. P. 191 – 200.
- Shibusawa H., Matsushima D. Assessing the economic impact of tsunami and nuclear power plant disasters in Shizuoka, Japan: a dynamic inter-regional input – output (IRIO) approach //Asia-Pacific Journal of Regional Science. 2022. P. 1 – 27.
- Smets, Frank and Warne, Anders and Wouters, Rafael, Professional Forecasters and the Real-time Forecasting Performance of an Estimated New Keynesian Model for the Euro Area (August 2013) // ECB Working Paper. – 2013. 1571 p.
- Smets F., Wouters R. An estimated stochastic dynamic general equilibrium model of the euro area: International Seminar on Macroeconomics // Europian Central Bank. 2002. 10 p.
Supplementary files
