Assessment of the functioning of the photosynthetic apparatus of Olea europaea L. under freezing temperatures

Cover Page

Cite item

Full Text

Abstract

Background. Olive (O. europaea) is a popular fruit crop, and is the second in the world by area after coffee. The main limiting factor for olive cultivation in regions located on the northern border of the subtropical zone, as well as in temperate climates, is their low frost resistance. So, the aim of the present study was to evaluate the degree of influence of low negative temperatures on the functional state of leaves of different O. europaea genotypes.

Materials and methods. The functioning of pigment apparatus, stability of chlorophyll-protein complex and membrane damage under freezing temperatures were evaluated on leaves of the following cultivars of olive: ‘Aglandau’, ‘Coreggiolo’, ‘Obilnaya’, ‘Tiflis’, ‘Dalmatica’, ‘Nikitskaya 2’, ‘Ascolano’, ‘Tossijskaya’, ‘Leccino’, ‘Razzo’. The studies were carried out under native conditions (control) and after exposure to low temperatures (immediately and after 24 hours of the stress factor influence). Four temperature effects were analyzed: -7°C, -10°C, -12°C and -14°C.

Results and conclusion. Exposure to sub-zero temperatures induced a different response both in the manifestation of visual lesions on leaves and in changes in their physiological parameters. At a low gradient of temperature exposure (-7... - 10°C), leaf tissues of the European selection varieties ‘Coreggiolo’, ‘Ascolano’, ‘Leccino’ and ‘Razzo’ were damaged: electrical conductivity reached 15%, chlorophyll stability index decreased, variable fluorescence and photosynthetic activity coefficients decreased, uncontrolled photon quenching was significantly higher than the effective photochemical quantum yield and non-photochemical quenching. Cultivars of crimean and caucasian breeding are characterised by increased frost resistance. Cultivars ‘Nikitskaya 2’, ‘Tossijskaya’ and ‘Tiflis’ demonstrate integrity of leaf cell membranes, preservation of stability of photosynthetic pigments content and work of photosystems at different levels of their organization at –14°C.

About the authors

Sergei Yu. Tsiupka

Nikitsky Botanical Garden-National Scientific Center

Author for correspondence.
Email: tsupkanbg@mail.ru

PhD, Senior Researcher

 

Russian Federation, 52, Nikitsky descent, Yalta, 298648, Russian Federation

Valentina A. Tsiupka

Nikitsky Botanical Garden-National Scientific Center

Email: valentina.brailko@yandex.ru

PhD, Head of the Laboratory of Plant Genomics and Bioinformatics, Senior Researcher

 

Russian Federation, 52, Nikitsky descent, Yalta, 298648, Russian Federation

Ilya V. Bulavin

Nikitsky Botanical Garden-National Scientific Center

Email: cellbiolnbs@yandex.ru

PhD, Head of the Laboratory of Plant Cell Biology and Anatomy, Senior Researcher

 

Russian Federation, 52, Nikitsky descent, Yalta, 298648, Russian Federation

References

  1. Gol'tsev, V. N., Kaladzhi, Kh. M., Paunov, M., Baba, V., Khorachek, T., Moyski, Ya., Kotsel, Kh., & Allahverdiev, S. I. (2016). Using variable chlorophyll fluorescence to evaluate the physiological state of the photosynthetic apparatus of plants. Fiziologiya rasteniy, 63(6), 881–907. https://doi.org/10.7868/S0015330316050055
  2. Domanskaya, E. N. (1964). Study of physiological and biochemical indicators of comparative frost resistance of olive varieties. Unpublished doctoral dissertation, Yalta.
  3. Ivanova, M. I., Bukharov, A. F., & Kashleva, A. I. (2022). Correlation analysis of traits characterizing yield and product quality of Allium (subgenus Sera) representatives. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya, 22(1), 64–73. https://doi.org/10.18500/1816-9775-2022-22-1-64-73
  4. Nesterenko, T. V., Tikhomirov, A. A., & Shikhov, V. N. (2007). Induction of chlorophyll fluorescence and assessment of plant resistance to adverse influences. Zhurnal obshchey biologii, 68(6), 444–458.
  5. Nesterov, Ya. S. (1972). Methodology for assessing winter hardiness and frost resistance of fruit and berry crops. Michurinsk.
  6. Rubin, A. B. (2000). Biophysical methods in ecological monitoring. Sorosovskiy Obrazovatel'nyy Zhurnal, (4), 7–13.
  7. Shchennikova, I. N., Lisitsyn, E. M., & Kokina, L. P. (2010). Changes in the pigment complex of barley flag leaves under the influence of edaphic stress. Agrarnaya nauka Euro-Severo-Vostoka, (1), 24–28.
  8. Yushkov, A. N. (2017). Adaptive potential and breeding of fruit plants resistant to abiotic stresses. Unpublished doctoral dissertation, Michurinsk: Michurinsky State Agrarian University.
  9. Alekseev, A. A., Osipov, V. A., & Matorin, D. N. (2006). Method for determining the functional state of plants by chlorophyll fluorescence. Yakut State University, Yakutsk, 65 p.
  10. Antognozzi, E., Pilli, M., Proietti, P., & Romani, F. (1990). Analysis of some factors affecting frost resistance in olive trees. Paper presented at XXIII Int. Horticultural Congress, Firenze, Italy, 4280 p.
  11. Arias, N. S., Scholz, F. G., Goldstein, G., & Bucci, S. J. (2021). Low-temperature acclimation and legacy effects of summer water deficits in olive freezing resistance. Tree Physiology, 41(10), 1836–1847. https://doi.org/10.1093/treephys/tpab040
  12. Baker, N. R., & Oxborough, K. (2004). Chlorophyll fluorescence as a probe of photosynthetic productivity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (pp. 65–82). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_3
  13. Bartolozzi, F., & Fontanazza, G. (1999). Assessment of frost tolerance in olive (Olea europaea L.). Scientia Horticulturae, 81, 309–319. https://doi.org/10.1016/S0304-4238(99)00019-9
  14. Bartolozzi, F., Rocchi, P., Camerini, F., & Fontanazza, G. (1999). Changes of biochemical parameters in olive (Olea europaea L.) leaves during an entire vegetative season, and their correlation with frost resistance. Acta Horticulturae, 474, 435–440. https://doi.org/10.17660/ActaHortic.1999.474.89
  15. Brajon, O. V., Korneev, D. Yu., Snegur, O. O., & Kitaev, O. I. (2000). Instrumental studies of the photosynthetic apparatus using the induction of chlorophyll fluorescence. Methodical instructions. Kyiv, Ukraine, 11 p.
  16. D'Angeli, S., & Altamura, M. M. (2007). Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta, 225, 1147–1163. https://doi.org/10.1007/s00425-006-0426-6
  17. Deslauriers, A., Caron, L., & Rossi, S. (2015). Carbon allocation during defoliation: Testing a defense-growth trade-off in balsam fir. Frontiers in Plant Science, 6, 338. https://doi.org/10.3389/fpls.2015.00338
  18. Fontanazza, G. (1986). Renovation of olive groves damaged by frost: technical guidelines. Giornale di Agricolture, 42, 45–47.
  19. Food and Agriculture Organization (FAO) and Codex Alimentarius Commission. Available online: http://www.fao.org/. Accessed date: November 2023. https://doi.org/10.4337/9781786438935.00011
  20. García-Mozo, H., Pérez-Badía, R., & Galán, C. (2008). Aerobiological and meteorological factors’ influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (central Spain). Aerobiologia, 24, 13–18. https://doi.org/10.1007/s10453-007-9075-x
  21. Ghamary, B., Rajabipour, A., Borghei, A. M., & Sadeghi, H. (2010). Some physical properties of olive. Agricultural Engineering International, 12, 104–110. https://cigrjournal.org/index.php/Ejounral/article/view/1381
  22. Gómez-del Campo, M., & Barranco, D. (2005). Field evaluation of frost tolerance in ten olive cultivars. Plant Genetic Resources, 3(3), 385–390. https://doi.org/10.1079/PGR200592
  23. Gordeev, R. V., Pyzhev, A. I., & Zander, E. V. (2022). Does climate change influence Russian agriculture? Evidence from panel data analysis. Sustainability, 14, 718. https://doi.org/10.3390/su14020718
  24. Gubanova, T. B. (2019a). Resistance of Olea europaea L. varieties and forms to unfavorable winter conditions on the southern coast of Crimea. Pomiculture and Small Fruit Culture in Russia, 57, 32–41. https://doi.org/10.31676/2073-4948-2019-57-32-41
  25. Gubanova, T. B. (2019b). The influence of negative temperatures on photosynthetic activity in some evergreen species of Oleaceae family. Subtropical and Decorative Gardening, 70, 158–167. https://doi.org/10.31360/2225-3068-2019-70-158-167
  26. Gubanova, T. B., & Paliy, A. E. (2020). Physiological and biochemical aspects of frost resistance in Olea europaea L. Russian Journal of Plant Physiology, 67, 671–679. https://doi.org/10.1134/S1021443720030103
  27. Ivashchenko, Y., Ivashchenko, I., & Tsiupka, S. (2021). Evaluation of olive cultivars with different photosynthetic activity of leaves. Acta Horticulturae, 1308, 99–104. https://doi.org/10.17660/ActaHortic.2021.1308.16
  28. Kramer, D. M., Johnson, G., Kirats, O., & Edwards, G. E. (2004). New flux parameters for the determination of Qa redox state and excitation flux. Photosynthesis Research, 79, 209–218. https://doi.org/10.1023/B:PRES.0000015391.99477.0d
  29. La Porta, N., Zacchini, M., Bartolini, S., Viti, R., & Roselli, G. (1994). The frost hardiness of some clones of olive cv. Leccino. Journal of Horticultural Science, 69(3), 433–435. https://doi.org/10.1080/14620316.1994.11516472
  30. Lichtenthaler, H. K. (2004). Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In H. K. Lichtenthaler & F. Babani (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis (pp. 713–736). Dordrecht: Springer Netherlands.
  31. Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19(1), 29–85. https://doi.org/10.1080/15476510.1988.10401466
  32. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592. https://doi.org/10.1042/bst0110591
  33. Martin, G. C., Denney, J. O., Ketchie, D. O., Osgood, J. W., Connel, J. H., Sibbett, G. S., Kammereck, R., Krueger, W. H., & Nour, G. A. (1993). Freeze damage and cold hardiness in olive: Findings from the 1990 freeze. California Agriculture, 47(1), 1–12. https://www.cabidigitallibrary.org/doi/full/10.5555/19930325238
  34. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659
  35. Moreno-Alias, I., Leon, L., de la Rosa, R., & Rapoport, H. F. (2009). Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees, 23, 181–187. https://doi.org/10.3390/agriculture13061137
  36. Rezaei, M., & Rohani, A. (2023). Estimating freezing injury on olive trees: A comparative study of computing models based on electrolyte leakage and tetrazolium tests. Agriculture, 13, 1137. https://doi.org/10.3390/agriculture13061137
  37. Rinderle, U., & Lichtenthaler, H. K. (1988). The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. In H. K. Lichtenthaler (Ed.), Applications of Chlorophyll Fluorescence (pp. 189–196). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-2823-7_23
  38. Rodrigo-Comino, J., Salvia, R., Quaranta, G., Cudlin, P., Salvati, L., & Gimenez-Morera, A. (2021). Climate aridity and the geographical shift of olive trees in a Mediterranean northern region. Climate, 9, 64. https://doi.org/10.3390/cli9040064
  39. Roselli, G., La Porta, N., & Morelli, D. (1992). Evaluations of olive germplasm for cold-stress tolerance. Atti Convegno Germoplasma Frutticolo: Alghero, Settembre, pp. 107–112.
  40. Roselli, G., & Venora, G. (1989). Relationship between stomatal size and winter hardiness in the olive. International Symposium on Olive Growing, 286, 89–92. https://doi.org/10.17660/ActaHortic.1990.286.15
  41. Roselli, G., & Venora, G. (1990). Relationship between stomatal size and winter hardiness in the olive. Acta Horticulturae, 286, 89–92. https://doi.org/10.17660/ActaHortic.1990.286.15
  42. Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51–62. https://doi.org/10.1007/BF00024185
  43. Stirbet, A., & Govindjee, G. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1–2), 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
  44. Tanentzap, F. M., Stempel, A., & Ryser, P. (2015). Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany, 93, 535–541. https://doi.org/10.1139/cjb-2015-0065
  45. Tsiupka, S. (2018). Historical review of olive germplasm evaluation and cultivar development in Crimea. Acta Horticulturae, 1208, 97–104. https://doi.org/10.17660/ActaHortic.2018.1208.13
  46. van Kooten, O., & Snel, J. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147–150. https://doi.org/10.1007/BF00033156
  47. Xu, Z., Zhou, G., & Li, H. (2004). Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature. Journal of Environmental Sciences, 16(4), 666–669.
  48. Yoshida, S., & Uemura, M. (1990). Responses of the plasma membrane to cold acclimation and freezing stress. In The Plant Plasma Membrane (pp. 293–320). Berlin: Springer. https://doi.org/10.1007/978-3-642-74522-5_13
  49. Zhang, B. B., Xu, J. L., Zhou, M., Yan, D. H., & Ma, R. J. (2018). Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch). Photosynthetica, 56, 1113–1122. https://doi.org/10.1007/s11099-018-0820-x

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».