Assessment of the functioning of the photosynthetic apparatus of Olea europaea L. under freezing temperatures
- Authors: Tsiupka S.Y.1, Tsiupka V.A.1, Bulavin I.V.1
-
Affiliations:
- Nikitsky Botanical Garden-National Scientific Center
- Issue: Vol 17, No 1 (2025)
- Pages: 182-204
- Section: Plant Breeding and Seed Production
- Published: 28.02.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/309194
- DOI: https://doi.org/10.12731/2658-6649-2025-17-1-1058
- EDN: https://elibrary.ru/WTGVZM
- ID: 309194
Cite item
Full Text
Abstract
Background. Olive (O. europaea) is a popular fruit crop, and is the second in the world by area after coffee. The main limiting factor for olive cultivation in regions located on the northern border of the subtropical zone, as well as in temperate climates, is their low frost resistance. So, the aim of the present study was to evaluate the degree of influence of low negative temperatures on the functional state of leaves of different O. europaea genotypes.
Materials and methods. The functioning of pigment apparatus, stability of chlorophyll-protein complex and membrane damage under freezing temperatures were evaluated on leaves of the following cultivars of olive: ‘Aglandau’, ‘Coreggiolo’, ‘Obilnaya’, ‘Tiflis’, ‘Dalmatica’, ‘Nikitskaya 2’, ‘Ascolano’, ‘Tossijskaya’, ‘Leccino’, ‘Razzo’. The studies were carried out under native conditions (control) and after exposure to low temperatures (immediately and after 24 hours of the stress factor influence). Four temperature effects were analyzed: -7°C, -10°C, -12°C and -14°C.
Results and conclusion. Exposure to sub-zero temperatures induced a different response both in the manifestation of visual lesions on leaves and in changes in their physiological parameters. At a low gradient of temperature exposure (-7... - 10°C), leaf tissues of the European selection varieties ‘Coreggiolo’, ‘Ascolano’, ‘Leccino’ and ‘Razzo’ were damaged: electrical conductivity reached 15%, chlorophyll stability index decreased, variable fluorescence and photosynthetic activity coefficients decreased, uncontrolled photon quenching was significantly higher than the effective photochemical quantum yield and non-photochemical quenching. Cultivars of crimean and caucasian breeding are characterised by increased frost resistance. Cultivars ‘Nikitskaya 2’, ‘Tossijskaya’ and ‘Tiflis’ demonstrate integrity of leaf cell membranes, preservation of stability of photosynthetic pigments content and work of photosystems at different levels of their organization at –14°C.
Keywords
About the authors
Sergei Yu. Tsiupka
Nikitsky Botanical Garden-National Scientific Center
Author for correspondence.
Email: tsupkanbg@mail.ru
PhD, Senior Researcher
Russian Federation, 52, Nikitsky descent, Yalta, 298648, Russian Federation
Valentina A. Tsiupka
Nikitsky Botanical Garden-National Scientific Center
Email: valentina.brailko@yandex.ru
PhD, Head of the Laboratory of Plant Genomics and Bioinformatics, Senior Researcher
Russian Federation, 52, Nikitsky descent, Yalta, 298648, Russian Federation
Ilya V. Bulavin
Nikitsky Botanical Garden-National Scientific Center
Email: cellbiolnbs@yandex.ru
PhD, Head of the Laboratory of Plant Cell Biology and Anatomy, Senior Researcher
Russian Federation, 52, Nikitsky descent, Yalta, 298648, Russian Federation
References
- Gol'tsev, V. N., Kaladzhi, Kh. M., Paunov, M., Baba, V., Khorachek, T., Moyski, Ya., Kotsel, Kh., & Allahverdiev, S. I. (2016). Using variable chlorophyll fluorescence to evaluate the physiological state of the photosynthetic apparatus of plants. Fiziologiya rasteniy, 63(6), 881–907. https://doi.org/10.7868/S0015330316050055
- Domanskaya, E. N. (1964). Study of physiological and biochemical indicators of comparative frost resistance of olive varieties. Unpublished doctoral dissertation, Yalta.
- Ivanova, M. I., Bukharov, A. F., & Kashleva, A. I. (2022). Correlation analysis of traits characterizing yield and product quality of Allium (subgenus Sera) representatives. Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya, 22(1), 64–73. https://doi.org/10.18500/1816-9775-2022-22-1-64-73
- Nesterenko, T. V., Tikhomirov, A. A., & Shikhov, V. N. (2007). Induction of chlorophyll fluorescence and assessment of plant resistance to adverse influences. Zhurnal obshchey biologii, 68(6), 444–458.
- Nesterov, Ya. S. (1972). Methodology for assessing winter hardiness and frost resistance of fruit and berry crops. Michurinsk.
- Rubin, A. B. (2000). Biophysical methods in ecological monitoring. Sorosovskiy Obrazovatel'nyy Zhurnal, (4), 7–13.
- Shchennikova, I. N., Lisitsyn, E. M., & Kokina, L. P. (2010). Changes in the pigment complex of barley flag leaves under the influence of edaphic stress. Agrarnaya nauka Euro-Severo-Vostoka, (1), 24–28.
- Yushkov, A. N. (2017). Adaptive potential and breeding of fruit plants resistant to abiotic stresses. Unpublished doctoral dissertation, Michurinsk: Michurinsky State Agrarian University.
- Alekseev, A. A., Osipov, V. A., & Matorin, D. N. (2006). Method for determining the functional state of plants by chlorophyll fluorescence. Yakut State University, Yakutsk, 65 p.
- Antognozzi, E., Pilli, M., Proietti, P., & Romani, F. (1990). Analysis of some factors affecting frost resistance in olive trees. Paper presented at XXIII Int. Horticultural Congress, Firenze, Italy, 4280 p.
- Arias, N. S., Scholz, F. G., Goldstein, G., & Bucci, S. J. (2021). Low-temperature acclimation and legacy effects of summer water deficits in olive freezing resistance. Tree Physiology, 41(10), 1836–1847. https://doi.org/10.1093/treephys/tpab040
- Baker, N. R., & Oxborough, K. (2004). Chlorophyll fluorescence as a probe of photosynthetic productivity. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (pp. 65–82). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-3218-9_3
- Bartolozzi, F., & Fontanazza, G. (1999). Assessment of frost tolerance in olive (Olea europaea L.). Scientia Horticulturae, 81, 309–319. https://doi.org/10.1016/S0304-4238(99)00019-9
- Bartolozzi, F., Rocchi, P., Camerini, F., & Fontanazza, G. (1999). Changes of biochemical parameters in olive (Olea europaea L.) leaves during an entire vegetative season, and their correlation with frost resistance. Acta Horticulturae, 474, 435–440. https://doi.org/10.17660/ActaHortic.1999.474.89
- Brajon, O. V., Korneev, D. Yu., Snegur, O. O., & Kitaev, O. I. (2000). Instrumental studies of the photosynthetic apparatus using the induction of chlorophyll fluorescence. Methodical instructions. Kyiv, Ukraine, 11 p.
- D'Angeli, S., & Altamura, M. M. (2007). Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta, 225, 1147–1163. https://doi.org/10.1007/s00425-006-0426-6
- Deslauriers, A., Caron, L., & Rossi, S. (2015). Carbon allocation during defoliation: Testing a defense-growth trade-off in balsam fir. Frontiers in Plant Science, 6, 338. https://doi.org/10.3389/fpls.2015.00338
- Fontanazza, G. (1986). Renovation of olive groves damaged by frost: technical guidelines. Giornale di Agricolture, 42, 45–47.
- Food and Agriculture Organization (FAO) and Codex Alimentarius Commission. Available online: http://www.fao.org/. Accessed date: November 2023. https://doi.org/10.4337/9781786438935.00011
- García-Mozo, H., Pérez-Badía, R., & Galán, C. (2008). Aerobiological and meteorological factors’ influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (central Spain). Aerobiologia, 24, 13–18. https://doi.org/10.1007/s10453-007-9075-x
- Ghamary, B., Rajabipour, A., Borghei, A. M., & Sadeghi, H. (2010). Some physical properties of olive. Agricultural Engineering International, 12, 104–110. https://cigrjournal.org/index.php/Ejounral/article/view/1381
- Gómez-del Campo, M., & Barranco, D. (2005). Field evaluation of frost tolerance in ten olive cultivars. Plant Genetic Resources, 3(3), 385–390. https://doi.org/10.1079/PGR200592
- Gordeev, R. V., Pyzhev, A. I., & Zander, E. V. (2022). Does climate change influence Russian agriculture? Evidence from panel data analysis. Sustainability, 14, 718. https://doi.org/10.3390/su14020718
- Gubanova, T. B. (2019a). Resistance of Olea europaea L. varieties and forms to unfavorable winter conditions on the southern coast of Crimea. Pomiculture and Small Fruit Culture in Russia, 57, 32–41. https://doi.org/10.31676/2073-4948-2019-57-32-41
- Gubanova, T. B. (2019b). The influence of negative temperatures on photosynthetic activity in some evergreen species of Oleaceae family. Subtropical and Decorative Gardening, 70, 158–167. https://doi.org/10.31360/2225-3068-2019-70-158-167
- Gubanova, T. B., & Paliy, A. E. (2020). Physiological and biochemical aspects of frost resistance in Olea europaea L. Russian Journal of Plant Physiology, 67, 671–679. https://doi.org/10.1134/S1021443720030103
- Ivashchenko, Y., Ivashchenko, I., & Tsiupka, S. (2021). Evaluation of olive cultivars with different photosynthetic activity of leaves. Acta Horticulturae, 1308, 99–104. https://doi.org/10.17660/ActaHortic.2021.1308.16
- Kramer, D. M., Johnson, G., Kirats, O., & Edwards, G. E. (2004). New flux parameters for the determination of Qa redox state and excitation flux. Photosynthesis Research, 79, 209–218. https://doi.org/10.1023/B:PRES.0000015391.99477.0d
- La Porta, N., Zacchini, M., Bartolini, S., Viti, R., & Roselli, G. (1994). The frost hardiness of some clones of olive cv. Leccino. Journal of Horticultural Science, 69(3), 433–435. https://doi.org/10.1080/14620316.1994.11516472
- Lichtenthaler, H. K. (2004). Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In H. K. Lichtenthaler & F. Babani (Eds.), Chlorophyll a Fluorescence: A Signature of Photosynthesis (pp. 713–736). Dordrecht: Springer Netherlands.
- Lichtenthaler, H. K., & Rinderle, U. (1988). The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry, 19(1), 29–85. https://doi.org/10.1080/15476510.1988.10401466
- Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592. https://doi.org/10.1042/bst0110591
- Martin, G. C., Denney, J. O., Ketchie, D. O., Osgood, J. W., Connel, J. H., Sibbett, G. S., Kammereck, R., Krueger, W. H., & Nour, G. A. (1993). Freeze damage and cold hardiness in olive: Findings from the 1990 freeze. California Agriculture, 47(1), 1–12. https://www.cabidigitallibrary.org/doi/full/10.5555/19930325238
- Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany, 51(345), 659–668. https://doi.org/10.1093/jexbot/51.345.659
- Moreno-Alias, I., Leon, L., de la Rosa, R., & Rapoport, H. F. (2009). Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees, 23, 181–187. https://doi.org/10.3390/agriculture13061137
- Rezaei, M., & Rohani, A. (2023). Estimating freezing injury on olive trees: A comparative study of computing models based on electrolyte leakage and tetrazolium tests. Agriculture, 13, 1137. https://doi.org/10.3390/agriculture13061137
- Rinderle, U., & Lichtenthaler, H. K. (1988). The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. In H. K. Lichtenthaler (Ed.), Applications of Chlorophyll Fluorescence (pp. 189–196). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-2823-7_23
- Rodrigo-Comino, J., Salvia, R., Quaranta, G., Cudlin, P., Salvati, L., & Gimenez-Morera, A. (2021). Climate aridity and the geographical shift of olive trees in a Mediterranean northern region. Climate, 9, 64. https://doi.org/10.3390/cli9040064
- Roselli, G., La Porta, N., & Morelli, D. (1992). Evaluations of olive germplasm for cold-stress tolerance. Atti Convegno Germoplasma Frutticolo: Alghero, Settembre, pp. 107–112.
- Roselli, G., & Venora, G. (1989). Relationship between stomatal size and winter hardiness in the olive. International Symposium on Olive Growing, 286, 89–92. https://doi.org/10.17660/ActaHortic.1990.286.15
- Roselli, G., & Venora, G. (1990). Relationship between stomatal size and winter hardiness in the olive. Acta Horticulturae, 286, 89–92. https://doi.org/10.17660/ActaHortic.1990.286.15
- Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51–62. https://doi.org/10.1007/BF00024185
- Stirbet, A., & Govindjee, G. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1–2), 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010
- Tanentzap, F. M., Stempel, A., & Ryser, P. (2015). Reliability of leaf relative water content (RWC) measurements after storage: consequences for in situ measurements. Botany, 93, 535–541. https://doi.org/10.1139/cjb-2015-0065
- Tsiupka, S. (2018). Historical review of olive germplasm evaluation and cultivar development in Crimea. Acta Horticulturae, 1208, 97–104. https://doi.org/10.17660/ActaHortic.2018.1208.13
- van Kooten, O., & Snel, J. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25, 147–150. https://doi.org/10.1007/BF00033156
- Xu, Z., Zhou, G., & Li, H. (2004). Responses of chlorophyll fluorescence and nitrogen level of Leymus chinensis seedling to changes of soil moisture and temperature. Journal of Environmental Sciences, 16(4), 666–669.
- Yoshida, S., & Uemura, M. (1990). Responses of the plasma membrane to cold acclimation and freezing stress. In The Plant Plasma Membrane (pp. 293–320). Berlin: Springer. https://doi.org/10.1007/978-3-642-74522-5_13
- Zhang, B. B., Xu, J. L., Zhou, M., Yan, D. H., & Ma, R. J. (2018). Effect of light quality on leaf photosynthetic characteristics and fruit quality of peach (Prunus persica L. Batch). Photosynthetica, 56, 1113–1122. https://doi.org/10.1007/s11099-018-0820-x
Supplementary files
