Strawberry Freshness Assessment by Hyperspectral Imaging

Cover Page

Cite item

Full Text

Abstract

Background. Strawberry is a highly valued and perishable food item. The freshness of these fruits plays a crucial role in their quality, as it determines their shelf life, nutritional content, visual appeal, and safety for human consumption. Traditional methods of assessing fruit freshness are subjective, labor-intensive, and have low productivity. This study aims to develop a methodology for quantitatively assessing the freshness of strawberries using hyperspectral imaging, which can provide objective and accurate measurements of fruit quality.

Materials and method. During the research, we evaluated the spectral properties of the outer surface and internal structure of strawberries from "Remontant Elizabeth II" over a period of 26 days after harvesting. The measuring instrument used was an acousto-optical Vis-NIR imaging spectrometer. Digital data processing involved preprocessing spectral images, morphological analysis, and calculating a quantitative metric for spectral reflectance at the most informative wavelengths. Statistical analysis was based on constructing regression models to determine the post-harvest period for strawberries. Model evaluation was done using the coefficients of determination (R2), relative error (RE), and root mean squared error (RMSE).

Results. The methodology for assessing the freshness of strawberries using hyperspectral imaging has been proposed. Mathematical models for determining the post-harvest period of "Remontant Elizaveta II" strawberries were obtained using hyperspectral images of the surface and internal structure of the samples. Analysis of the spectral properties of the external surface of fruits showed higher accuracy in determining the postharvest period, with ,  and .. Regression models with different polynomial orders were assessed, and the cubic polynomial showed the greatest effectiveness. A set of the most informative wavelengths was determined, based on which multiple regression analysis was performed, demonstrating the highest accuracy.

Conclusion. The developed methodology for quantitative analysis of strawberry freshness stands out for its precision, objectivity, efficiency, and automation. Assessment of individual stages, including sample preparation, hyperspectral imaging, digital data processing, and statistical analysis will be beneficial to advance methods for spectral diagnostics of food products. Proposed approach could supplement traditional methods of food quality control. Research could be used to develop optimal strategies for transportation, processing, storage and marketing of strawberry batches.

About the authors

Georgiy V. Nesterov

Scientific and Technological Center of Unique Instrument Engineering of the Russian Academy of Sciences

Email: NesterovGeorgiyV@yandex.ru
SPIN-code: 7418-5381

Research Engineer at the Laboratory of Acousto-optic Spectroscopy

 

Russian Federation, 15, Butlerova Str., Moscow, 117342, Russian Federation

Anastasia V. Guryleva

Scientific and Technological Center of Unique Instrument Engineering of the Russian Academy of Sciences

Author for correspondence.
Email: guryleva.av@ntcup.ru
SPIN-code: 2873-8095
Scopus Author ID: 57212027073
ResearcherId: ABA-3399-2021

Researcher at the Laboratory of Acousto-optic Spectroscopy

 

Russian Federation, 15, Butlerova Str., Moscow, 117342, Russian Federation

Milana O. Sharikova

Scientific and Technological Center of Unique Instrument Engineering of the Russian Academy of Sciences

Email: sharikova.mo@ntcup.ru
ORCID iD: 0000-0001-5593-6170
SPIN-code: 5269-2077
Scopus Author ID: 57218281289
ResearcherId: GQY-7045-2022

Junior Researcher at the Laboratory of Acousto-optic Spectroscopy

 

Russian Federation, 15, Butlerova Str., Moscow, 117342, Russian Federation

Svetlana A. Sukhanova

FOTINIA. I. TOPOS LABORATORY’ Limited Liability Company

Email: f.i.toposlab@mail.ru

General Director

Russian Federation, 107a, Kalinina Str., Dinskaya, Dinskoy District, Krasnodar Krai, 353204, Russian Federation

Alexander S. Machikhin

Scientific and Technological Center of Unique Instrument Engineering of the Russian Academy of Sciences

Email: machikhin@ntcup.ru
ORCID iD: 0000-0002-2864-3214
SPIN-code: 4060-7193
Scopus Author ID: 23012533400
ResearcherId: L-4381-2016

Head of the Laboratory of Acousto-optic Spectroscopy

 

Russian Federation, 15, Butlerova Str., Moscow, 117342, Russian Federation

References

  1. Leonteva, L. N. (2012). Sequential feature selection in regression recovery. Journal of Machine Learning and Data Analysis, 1(3), 335–346.
  2. Pozhar, V. E., et al. (2019). Hyperspectrometer based on an acousto-optic tunable filter for unmanned aerial vehicles. Light & Engineering, 27(3), 99–104. https://doi.org/10.33383/2018-029
  3. Azzini, E., et al. (2010). Bioavailability of strawberry antioxidants in human subjects. British Journal of Nutrition, 104(8), 1165–1173. https://doi.org/10.1017/S000711451000187X
  4. Bae, H., et al. (2014). Assessment of organic acids and sugars in apricots, plums, plumcots, and peaches during fruit maturation. Journal of Applied Botany and Food Quality, 87, 24–29. https://doi.org/10.5073/JABFQ.2014.087.004
  5. Bevacqua, D., Quilot-Turion, B., & Bolzoni, L. (2018). A model for temporal dynamics of brown rot propagation in fruit orchards. Phytopathology, 108(5), 595–601. https://doi.org/10.1094/PHYTO-07-17-0250-R
  6. Choi, J. Y., et al. (2021). Application of convolutional neural networks to assess the external quality of strawberries. Journal of Food Composition and Analysis, 102, 86–94. https://doi.org/10.1016/j.jfca.2021.104071
  7. Devassy, B. M., & George, S. (2021). Comparison of Regression Models for Estimating Strawberry Firmness Using Hyperspectral Imaging: Spectral Preprocessing to Compensate for Packaging Film. Journal of Spectral Imaging, 10, 55–69. https://doi.org/10.1255/jsi.2021.a3
  8. ElMasry, G., et al. (2007). Hyperspectral imaging for nondestructive determination of some quality attributes for strawberries. Journal of Food Engineering, 81(1), 98–107. https://doi.org/10.1016/j.jfoodeng.2006.10.016
  9. Gao, Z., et al. (2020). Real-time hyperspectral imaging for estimating strawberry ripeness in the field using deep learning. Artificial Intelligence in Agriculture, 4, 31–38. https://doi.org/10.1016/j.aiia.2020.04.003
  10. Giampieri, F., et al. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9–19. https://doi.org/10.1016/j.nut.2011.08.009
  11. Hu, X. F., et al. (2016). Nondestructive hardness assessment of kiwifruit using near-infrared spectroscopy. Proceedings - 2016 6th International Conference on Instrumentation and Measurement, Computer, Communication and Control, IMCCC 2016, pp. 69–72. https://doi.org/10.1109/IMCCC.2016.109
  12. Jha, S. K., et al. (2010). Firmness characteristics of mango hybrids under ambient storage. Journal of Food Engineering, 97(2), 208–212. https://doi.org/10.1016/j.jfoodeng.2009.10.011
  13. Katrašnik, J., Pernuš, F., & Likar, B. (2013). Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems. Applied Optics, 52(15), 3526–3537. https://doi.org/10.1364/AO.52.003526
  14. Ktenioudaki, A., et al. (2022). Decision support tool for determining shelf-life of strawberries using hyperspectral imaging technology. Biosystems Engineering, 221, 105–117. https://doi.org/10.1016/j.biosystemseng.2022.06.013
  15. Lu, R., & Peng, Y. (2006). Hyperspectral scattering for assessing peach fruit firmness. Biosystems Engineering, 93(2), 161–171. https://doi.org/10.1016/j.biosystemseng.2005.11.004
  16. Mendoza, F., et al. (2011). Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 62(2), 149–160. https://doi.org/10.1016/j.postharvbio.2011.05.009
  17. Nunes, C. N., & Emond, J.-P. (2007). Relationship between weight loss and visual quality of fruits and vegetables. Proceedings of Florida State Horticultural Society, 120, 235–245.
  18. Omar, A. F. (2013). Spectroscopic profiling of soluble solids content and acidity of intact grapes, limes, and starfruit. Sensor Review, 33(3), 238–245. https://doi.org/10.1108/02602281311324690
  19. Sánchez, M. T., et al. (2012). Non-destructive characterization and quality control of intact strawberries based on NIR spectral data. Journal of Food Engineering, 110(1), 102–108. https://doi.org/10.1016/j.jfoodeng.2011.12.003
  20. Seki, H., et al. (2023). Visualization of sugar content distribution in white strawberries using near-infrared hyperspectral imaging. Foods, 12(5), 122–136. https://doi.org/10.3390/foods12050931
  21. Shao, Y., & He, Y. (2008). Nondestructive measurement of acidity of strawberries using visible and near infrared spectroscopy. International Journal of Food Properties, 11(1), 102–111. https://doi.org/10.1080/10942910701257057
  22. Wang, H., et al. (2015). Fruit quality evaluation using spectroscopy technology: A review. Sensors (Switzerland), 15(5), 11889–11927. https://doi.org/10.3390/s150511889
  23. Zhang, C., et al. (2016). Hyperspectral imaging analysis for ripeness evaluation of strawberries using support vector machine. Journal of Food Engineering, 179, 11–18. https://doi.org/10.1016/j.jfoodeng.2016.01.002
  24. Zhang, D., et al. (2018). Rapid prediction of sugar content in Dangshan pear (Pyrus spp.) using hyperspectral imagery data. Food Analytical Methods, 11(8), 2336–2345. https://doi.org/10.1007/s12161-018-1212-3
  25. Zhang, Y., et al. (2015). Predicting apple sugar content based on spectral characteristics of apple tree leaves in different phenological stages. Computers and Electronics in Agriculture, 112, 20–27. https://doi.org/10.1016/j.compag.2015.01.006

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».