Potential use of different forms of yeast such as Saccharomyces cerevisiae in agricultural animal diets (review)
- Authors: Lazebnik K.S.1, Kosyan D.B.2, Duskaev G.K.2, Ryazanov V.A.2
-
Affiliations:
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
- Issue: Vol 17, No 1 (2025)
- Pages: 564-592
- Section: Scientific Reviews and Reports
- Published: 28.02.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/309470
- DOI: https://doi.org/10.12731/2658-6649-2025-17-1-1024
- EDN: https://elibrary.ru/GVBWDL
- ID: 309470
Cite item
Full Text
Abstract
Background. Modern animal breeding and fodder production aim to create favourable conditions and provide a balanced diet, including feed additives that positively affect the growth and development of farm animals and poultry. Yeast has gained attention due to the beneficial effects of its cellular components and biologically active compounds.
Purpose. Review and analysis of scientific publications on the use of various forms of yeast, namely Saccharomyces cerevisiae, as a feed additive for farm animals and poultry.
Materials and methods. To achieve the objective, we conducted a review of the scientific literature on the topic under study. This involved searching for evaluating, selecting and analyzing data.
Results. This review provides a brief description of the main bioactive components of yeast cells, which are believed to be responsible for the positive effects on animal health, including improved productivity, immune response, antioxidant status, and rumen and intestinal condition. These effects are largely attributed to the ability of yeast cells to modulate the microbiota of the gastrointestinal tract, promoting the growth of beneficial bacteria and reducing colonisation by pathogens.
Conclusion. Although there is a significant amount of data demonstrating the positive effects of yeast, contradictions exist that make it impossible to fully assess its safety for the organism. Therefore, it is not recommended for use in officially approved diets on an industrial scale until further studies have been conducted to better understand and dissect the effects and mechanisms of action of yeast and its components.
About the authors
Kristina S. Lazebnik
Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Author for correspondence.
Email: christinakondrashova94@yandex.ru
ORCID iD: 0000-0003-4907-9656
SPIN-code: 9820-8180
Scopus Author ID: 57209232529
ResearcherId: KFA-8181-2024
Junior Researcher Laboratory of Breeding and Genetic Research in Animal Husbandry
Russian Federation, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
Diana B. Kosyan
Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Email: kosyan.diana@mail.ru
ORCID iD: 0000-0002-2621-108X
Scopus Author ID: 56698270900
ResearcherId: O-1790-2016
PhD of Biological Sciences, Senior Researcher Laboratory of Breeding and Genetic Research in Animal Husbandry
Russian Federation, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
Galimzhan K. Duskaev
Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Email: gduskaev@mail.ru
ORCID iD: 0000-0002-9015-8367
SPIN-code: 7297-3319
Scopus Author ID: 56192764700
ResearcherId: N-4454-2014
Grand PhD in Biological Sciences, Leading Researcher of the Department of Animal Feeding and Feed Technology, Deputy Director
Russian Federation, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
Vitaly A. Ryazanov
Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences
Email: vita7456@yandex.ru
ORCID iD: 0000-0003-0903-9561
SPIN-code: 6076-5714
Scopus Author ID: 0000-0003-0903-9561
ResearcherId: AAG-8005-2020
PhD of Agricultural Sciences, Researcher of the Department of Animal Feeding and Feed Technology
Russian Federation, 29, 9 Yanvarya Str., Orenburg, 460000, Russian Federation
References
- Овсепьян, В. А., Юрина, Н. А., Тлецерук, И. Р., & Юрин, Д. А. (2023). Применение кормовых добавок в рационах цыплят-бройлеров: монография. Краснодар: Краснодарский научный центр по зоотехнии и ветеринарии. 166 с. https://doi.org/10.48612/monograph-2023-1 (Ovsepian, V. A., Yurina, N. A., Tlezeruk, I. R., & Yurin, D. A. (2023). Application of feed additives in broiler chickens' diets: Monograph. Krasnodar: Krasnodar Scientific Centre for Animal Husbandry and Veterinary Science. 166 p. https://doi.org/10.48612/monograph-2023-1)
- Рядчиков, В. Г., Астахова, Д. П., Сень, Т. А., Шляхова, О. Г., Потехин, С. А., & Тарасенко, О. А. (2014). Эффективность сухих пекарских дрожжей рода Saccharomyces cerevisiae в рационах молочных коров. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, (101), 1500–1515. (Ryadchikov, V. G., Astakhova, D. P., Sen’, T. A., Shlyakhova, O. G., Potekhin, S. A., & Tarasenko, O. A. (2014). Efficiency of dry baker's yeast genus Saccharomyces cerevisiae in dairy cows' diet. Polythematic Network Electronic Scientific Journal of Kuban State Agrarian University, (101), 1500–1515.)
- Смоленцев, С. Ю. (2023). Влияние пробиотиков на росто-весовые показатели молодняка крупного рогатого скота. Вестник Марийского государственного университета. Серия «Сельскохозяйственные науки. Экономические науки», 9(2), 197–204. (Smolentsev, S. Y. (2023). Effect of probiotics on growth-weight parameters of young cattle. Bulletin of Mari State University. Series "Agricultural sciences. Economic sciences", 9(2), 197–204.)
- Шацких, Е. В., Нуфер, А. И., & Галиев, Д. М. (2019). Рациональный подход к замене кормовых антибиотиков в рационах цыплят-бройлеров на альтернативные ростостимулирующие добавки СафМаннан и Иммуносан. Вестник Курганской ГСХА, 31(3), 47–49. (Shatskikh, E. V., Nufer, A. I., & Galiev, D. M. (2019). Rational approach to replacing feed antibiotics in broiler chickens' diets with alternative growth stimulators SafMannan and Immunosan. Bulletin of Kurgan State Agricultural Academy, 31(3), 47–49.)
- Ahiwe, E. U., Abdallh, M. E., Chang’a, E. P., Omede, A. A., Al-Qahtani, M., Gausi, H., Graham, H., & Iji, P. A. (2020). Influence of dietary supplementation of autolysed whole yeast and yeast cell wall products on broiler chickens. Asian-Australasian Journal of Animal Sciences, 33(4), 579–587. https://doi.org/10.5713/ajas.19.0220
- Alizadeh, M., Rodriguez, J. C., Yitbarek, A., Sharif, S., Crow, G., & Slominski, B. A. (2016). Effect of yeast-derived products on systemic innate immune response of broiler chickens following a lipopolysaccharide challenge. Poultry Science, 95(10), 2266–2273. https://doi.org/10.3382/ps/pew154
- Al-Nasrawi, M. A., Al-Kassie, G. A., & Ali, N. A. (2020). Role of yeast (Saccharomyces cerevisiae) as a source of probiotics in poultry diets. European Journal of Molecular & Clinical Medicine, 7(7), 6611–6617. https://www.researchgate.net/publication/348351795_Role_Of_Yeast_Saccharomyces_Cereviciae_As_A_Source_Of_Probiotics_In_Poultry_Diets
- Bach, A., Iglesias, C., & Devant, M. (2007). Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology, 136, 156–163. https://doi.org/10.1016/j.anifeedsci.2006.09.011
- Baurhoo, B., Phillip, L., & Ruiz-Feria, C. A. (2007). Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poultry Science, 86, 1070–1078. https://doi.org/10.1093/ps/86.6.1070
- Bonis, V., Rossell, C., & Gehart, H. (2021). The intestinal epithelium – fluid fate and rigid structure from crypt bottom to villus tip. Frontiers in Cell and Developmental Biology, 20(9), 661931. https://doi.org/10.3389/fcell.2021.661931
- Bontempo, V., Di Giancamillo, A., Savoini, G., Dell’Orto, V., & Domeneghini, C. (2006). Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Animal Feed Science and Technology, 129(3), 224–236. https://doi.org/10.1016/j.anifeedsci.2005.12.015
- Chacher, M. F. A., Kamran, Z., & Ahsan, U. (2017). Use of mannan oligosaccharide in broiler diets: an overview of underlying mechanism. World's Poultry Science Journal, 73, 831–844. https://doi.org/10.1017/S0043933917000757
- Chand, N., Khan, R. U., Mobashar, M., Naz, S., Rowghani, E., & Khan, M. A. (2019). Mannanoligosaccharide (MOS) in broiler ration during the starter phase: 1. Growth performance and intestinal histomorphology. Pakistan Journal of Zoology, 51, 173–176. https://doi.org/10.17582/journal.pjz/2019.51.1.173.176
- Chaucheyras-Durand, F., Chevaux, E., Martin, C., & Forano, E. (2012). Use of yeast probiotics in ruminants: Effects and mechanisms of action on rumen pH, fibre degradation, and microbiota according to the diet. In Rigobelo, E. (Ed.), Probiotic in Animals (pp. 119–152). IntechOpen. http://dx.doi.org/10.5772/50192
- Chaucheyras-Durand, F., Walker, N. D., & Bach, A. (2008). Effects of active dry yeast on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology, 145, 5–26. https://doi.org/10.1016/j.anifeedsci.2007.04.019
- Chung, Y. H., Walker, N. D., McGinn, S. M., & Beauchemin, K. A. (2011). Differing effects of two active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in non-lactating dairy cows. Journal of Dairy Science, 94, 2431–2439. https://doi.org/10.3168/jds.2010-3277
- Cox, C. M., Sumners, L. H., Kim, S., McElroy, A. P., Bedford, M. R., & Dalloul, R. A. (2010). Immune responses to dietary β-glucan in broiler chicks during an Eimeria challenge. Poultry Science, 89, 2597–2607. https://doi.org/10.3382/ps.2010-00987
- Cui, C., Li, L., Wu, L., Wang, X., Zheng, Y., Wang, F., Wei, H., & Peng, J. (2023). Paneth cells in farm animals: current status and future direction. Journal of Animal Science and Biotechnology, 14(1), 118. https://doi.org/10.1186/s40104-023-00905-5
- Dalmo, R. A., & Bøgwald, J. (2008). β-glucans as conductors of immune symphonies. Fish & Shellfish Immunology, 25, 384–396. https://doi.org/10.1016/j.fsi.2008.04.008
- Ding, B., Zheng, J., Wang, X., Zhang, L., Sun, D., Xing, Q., Pirone, A., & Fronte, B. (2019). Effects of dietary yeast beta-1,3-1,6-glucan on growth performance, intestinal morphology and chosen immunity parameters changes in Haidong chicks. Asian-Australasian Journal of Animal Sciences, 32(10), 1558–1564. https://doi.org/10.5713/ajas.18.0962
- Elghandour, M. M. Y., Tan, Z. L., Abu Hafsa, S. H., Adegbeye, M. J., Greiner, R., Ugbogu, E. A., Monroy, J. C., & Salem, A. Z. M. (2020). Saccharomyces cerevisiae as a probiotic feed additive to non‐ and pseudo‐ruminant feeding: A review. Journal of Applied Microbiology, 128(3), 658–674. https://doi.org/10.1111/jam.14416
- Enculescu, M. (2021). Effects of Saccharomyces cerevisiae addition in dairy cow diets. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 78(1), 18–26. https://doi.org/10.15835/buasvmcn-asb:2020.0022
- Feldmann, H. (2012). Yeast: Molecular and Cell Biology (2nd ed.). John Wiley & Sons: Hoboken, NJ. ISBN: 978-3-527-65918-0
- Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Pratti Daniel, J. L., Iank Bueno, A. V., & Gonçalves Ribeiro, M. (2018). Use of live yeast and mannan-oligosaccharides in grain-based diets for cattle: Ruminal parameters, nutrient digestibility, and inflammatory response. PLoS ONE, 13(11), e0207127. https://doi.org/10.1371/journal.pone.0207127
- Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira Jobim, C., Bolson, D. C., & Pratti Daniel, J. L. (2018). Correction: Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PLoS ONE, 13(4), e0196184. https://doi.org/10.1371/journal.pone.0193313
- Ghazanfar, S., Khalid, N., Ahmed, I., & Imran, M. (2017). Probiotic yeast: Mode of action and its effects on ruminant nutrition. In Yeast—Industrial Applications (pp. 179–202). IntechOpen. https://doi.org/10.5772/intechopen.70778
- Ghosh, T., Haldar, S., Bedford, M., Muthusami, N., & Samanta, I. (2012). Assessment of yeast cell wall as replacements for antibiotic growth promoters in broiler diets: Effects on performance, intestinal histo-morphology and humoral immune responses. Journal of Animal Physiology and Animal Nutrition, 96, 275–284. https://doi.org/10.1111/j.1439-0396.2011.01155.x
- Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., et al. (2017). Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14, 491–502. https://doi.org/10.1038/nrgastro.2017.75
- Göncü, S., Bozkurt, S., & Görgülü, M. (2020). The effect of yeast (Saccharomyces cerevisiae) on fattening performances of growing cattle. MOJ Ecology & Environmental Sciences, 5(3), 109–111. https://doi.org/10.15406/mojes.2020.05.00182
- Guo, J., Chang, G., Zhang, K., Xu, L., Jin, D., Bilal, M. S., & Shen, X. (2017). Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget, 8(29), 46769–46780. https://doi.org/10.18632/oncotarget.18151
- Gurbuz, E., Balevi, T., Kurtoglu, V., & Oznurlu, Y. (2011). Effects of adding yeast cell walls and Yucca schidigera extract to diets of layer chicks. British Poultry Science, 52(5), 625–631. https://doi.org/10.1080/00071668.2011.619517
- Hampson, D. J. (1986). Alterations in piglets' small intestinal structure at weaning. Research in Veterinary Science, 40, 32–40. https://doi.org/10.1016/S0034-5288(18)30482-X
- He, T., Mahfuz, S., Piao, X., Wu, D., Wang, W., Yan, H., Ouyang, T., & Liu, Y. (2021). Effects of live yeast (Saccharomyces cerevisiae) as a substitute to antibiotic on growth performance, immune function, serum biochemical parameters and intestinal morphology of broilers. Journal of Applied Animal Research, 49(1), 15–22. https://doi.org/10.1080/09712119.2021.1876705
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66
- Imrich, I., Copik, S. T., Mlyneková, E., Mlynek, J., Hascik, P., & Kanka, T. (2021). The effect of Saccharomyces cerevisiae additive to cattle ration on milk yield of dairy cows. Acta Fytotechnica Et Zootechnica, 24, 45–48. https://doi.org/10.15414/afz.2021.24.mi-prap.45-48
- Jacob, J., & Pescatore, A. (2017). Glucans and the poultry immune system. American Journal of Immunology, 13(3), 45–49. https://doi.org/10.3844/ajisp.2017.45.49
- Javadi, A., Mirzaei, H., Safarmashaei, S., & Vahdatpour, S. (2012). Effects of probiotic (live and inactive Saccharomyces cerevisiae) on meat and intestinal microbial properties of Japanese quails. African Journal of Biotechnology, 11(57), 12083–12087. https://doi.org/10.5897/AJB12.232
- Johnson, C. N., Hashim, M. M., Bailey, C. A., Byrd, J. A., Kogut, M. H., & Arsenault, R. J. (2020). Feeding of yeast cell wall extracts during a necrotic enteritis challenge enhances cell growth, survival and immune signaling in the jejunum of broiler chickens. Poultry Science Journal, 99(6), 2955–2966. https://doi.org/10.1016/j.psj.2020.03.012
- Klis, F. M., Mol, P., Hellingwerf, K., & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 26(3), 239–256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x
- Koc, F., Samli, H., Okur, A., Ozduven, M., Akyurek, H., & Senkoylu, N. (2010). Effects of Saccharomyces cerevisiae and/or mannanoligosaccharide on performance, blood parameters and intestinal microbiota of broiler chicks. Bulgarian Journal of Agricultural Science, 16, 643–650. https://www.agrojournal.org/16/05-15-10.pdf
- Kogan, G., Pajtinka, M., Babincova, M., Miadokova, E., Rauko, P., Slamenova, D., & Korolenko, T. A. (2008). Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma, 55(5), 387–393.
- Konca, Y., Kirkpinar, F., & Mert, S. (2009). Effects of mannan-oligosaccharides and live yeast in diets on the carcass, cut yields, meat composition and color of finishing turkeys. Asian-Australasian Journal of Animal Sciences, 22, 550–556. https://doi.org/10.5713/ajas.2009.80350
- Kovačević, M. (2015). Morphological and physiological characteristics of the yeast Saccharomyces cerevisiae cells differing in lifespan: Master thesis. Zagreb. 87 p. https://core.ac.uk/download/pdf/53873457.pdf
- Krizkova, L., Durackova, Z., Sandula, J., Sasinkova, V., & Krajcovic, J. (2001). Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 497, 213–222. https://doi.org/10.1016/s1383-5718(01)00257-1
- Lascano, G. J., & Heinrichs, A. J. (2009). Rumen fermentation pattern of dairy heifers fed restricted amounts of low, medium, and high concentrate diets without and with yeast culture. Livestock Science, 124, 48–57. https://doi.org/10.1016/j.livsci.2008.12.007
- Lei, C. L., Dong, G. Z., Jin, L., Zhang, S., & Zhou, J. (2013). Effects of dietary supplementation of montmorillonite and yeast cell wall on lipopolysaccharide adsorption, nutrient digestibility and growth performance in beef cattle. Livestock Science, 158, 57–63. https://doi.org/10.1016/j.livsci.2013.08.019
- Li, X. H., Chen, Y. P., Cheng, Y. F., Yang, W. L., Wen, C., & Zhou, Y. M. (2016). Effect of yeast cell wall powder with different particle sizes on the growth performance, serum metabolites, immunity and oxidative status of broilers. Animal Feed Science and Technology, 212, 81–89. https://doi.org/10.1016/j.anifeedsci.2015.12.011
- Lynch, H. A., & Martin, S. A. (2002). Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. Journal of Dairy Science, 85(10), 2603–2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
- Maamouri, O., Mabrouk, S., & Mathlouthi, L. M. (2019). Effects of Saccharomyces cerevisiae as dead yeast culture on feed supplement in fattening cattle on growth, intake parameters and nutrient digestibility. Large Animal Review, 25(3), 83–87. https://www.largeanimalreview.com/index.php/lar/article/view/325
- Magrin, L., Gottardo, F., Fiore, E., Gianesella, M., Martin, B., Chevaux, E., & Cozzi, G. (2018). Use of a live yeast strain of Saccharomyces cerevisiae in a high-concentrate diet fed to finishing Charolais bulls: Effects on growth, slaughter performance, behavior, and rumen environment. Animal Feed Science and Technology, 241, 84–93. https://doi.org/10.1016/j.anifeedsci.2018.04.021
- Masék, T., Mikulec, Ž., Valpotić, H., Kušće, L., Mikulec, N., & Antunac, N. (2008). The influence of live yeast cells (Saccharomyces cerevisiae) on the performance of grazing dairy sheep in late lactation. Veterinarski Arhiv, 78(2), 95–104. https://wwwi.vef.hr/vetarhiv/papers/2008-78-2-1.pdf
- Maturana, M., Castillejos, L., Martin-Orue, S. M., Minel, A., Chetty, O., Felix, A. P., & Lesaux, A. A. (2023). Potential benefits of yeast Saccharomyces and their derivatives in dogs and cats: A review. Frontiers in Veterinary Science, 10, 1279506. https://doi.org/10.3389/fvets.2023.1279506
- McCord, J. M. (1979). Superoxide: Superoxide dismutase and oxygen toxicity. Reviews of Biochemistry and Toxicology, 1, 109–124.
- Meledina, T. V., Ivanova, V. A., Golovinskaia, O. V., & Harba, R. (2021). Yeast. Morphology and physiology: Study guide. Saint-Petersburg: ITMO University. 68 p. https://books.ifmo.ru/file/pdf/2760.pdf
- Mirza, R. A., Muhammad, S. D., & Kareem, K. Y. (2020). Effect of commercial baker's yeast supplementation (Saccharomyces cerevisiae) in diet and drinking water on productive performance, carcass traits, haematology, and microbiological characteristics of local quails. Zanco Journal of Pure and Applied Sciences, 32(3), 200–205. https://doi.org/10.21271/ZJPAS.32.3.21
- Mohammed, S., Enas, A., & Farook, S. (2018). Review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. Journal of Entomology and Zoology Studies, 6(2), 629–635. https://doi.org/10.13140/RG.2.2.10675.37926
- Moyad, M. A., Robinson, L. E., Kittelsrud, J. M., Reeves, S. G., Weaver, S. E., & Guzman, A. I. (2009). Immunogenic yeast-based fermentation product reduces allergic rhinitis-induced nasal congestion: A randomized, double-blind, placebo-controlled trial. Advances in Therapy, 26, 795–804. https://doi.org/10.1007/s12325-009-0057-y
- Newbold, C. J., Wallace, R. J., Chen, X. B., & McIntosh, F. M. (1995). Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. Journal of Animal Science, 73, 1811–1818. https://doi.org/10.2527/1995.7361811x
- Newbold, C. J., Wallace, R. J., & McIntosh, F. M. (1996). Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. British Journal of Nutrition, 76, 249–261. https://doi.org/10.1079/bjn19960029
- Nguyen, T. H., Fleet, G. H., & Rogers, P. L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology, 50(2), 206–212. https://doi.org/10.1007/s002530051278
- Nochta, I., Tuboly, T., Halas, V., & Babinszky, L. (2009). Effect of different levels of mannan-oligosaccharide supplementation on some immunological variables in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 93(4), 496–504. https://doi.org/10.1111/j.1439-0396.2008.00835.x
- Öztürk, H., Emre, G., & Breves, G. (2016). Effects of hydrolysed yeasts on ruminal fermentation in the rumen simulation technique (Rusitec). Veterinary Medicine, 61, 195–203. https://doi.org/10.17221/8820-VETMED
- Olagaray, K. E., Sivinski, S. E., Saylor, B. A., Mamedova, L. K., Sauls-Hiesterman, J. A., Yoon, I., & Bradford, B. J. (2019). Effect of Saccharomyces cerevisiae fermentation product on feed intake parameters, lactation performance, and metabolism of transition dairy cattle. Journal of Dairy Science, 102(9), 8092–8107. https://doi.org/10.3168/jds.2019-16315
- Omara, I. I., Pender, C. M., White, M. B., & Dalloul, R. A. (2021). The modulating effect of dietary beta-glucan supplementation on expression of immune response genes of broilers during a coccidiosis challenge. Animals, 11(1), 159. https://doi.org/10.3390/ani11010159
- Ovinge, L. A., Sarturi, J. O., Galyean, M. L., Ballou, M. A., Trojan, S. J., Campanili, P. R. B., Alrumaih, A. A., & Pellarin, L. A. (2018). Effects of a live yeast in natural-program finishing feedlot diets on growth performance, digestibility, carcass characteristics, and feeding behavior. Journal of Animal Science, 96(2), 684–693. https://doi.org/10.1093/jas/sky011
- Patterson, R., Rogiewicz, A., Kiarie, E. G., & Slominski, B. A. (2022). Yeast derivatives as a source of bioactive components in animal nutrition: A brief review. Frontiers in Veterinary Science, 9, 1067383. https://doi.org/10.3389/fvets.2022.1067383
- Penner, G. B., Aschenbach, J. R., Gäbel, G., & Oba, M. (2009). Epithelial capacity for the apical uptake of short-chain fatty acids is a key determinant for intra-ruminal pH and the susceptibility to sub-acute ruminal acidosis in sheep. The Journal of Nutrition, 139, 1714–1720. https://doi.org/10.3945/jn.109.108506
- Perricone, V., Sandrini, S., Irshad, N., Savoini, G., Comi, M., & Agazzi, A. (2022). Yeast-derived products: The role of hydrolyzed yeast and yeast culture in poultry nutrition. A review. Animals, 12, 1426. https://doi.org/10.3390/ani12111426
- Pinloche, E., McEwan, N., Marden, J. P., Bayourthe, C., Auclair, E., & Newbold, C. J. (2013). The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PLoS ONE, 8(7), e67824. https://doi.org/10.1371/journal.pone.0067824
- Plaizier, J., Khafipour, E., Li, S., Gozho, G., & Krause, D. (2012). Subacute ruminal acidosis (SARA), endotoxins and health consequences. Animal Feed Science and Technology, 172, 9–21. https://doi.org/10.1016/j.anifeedsci.2011.12.004
- Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signaling. Current Medicinal Chemistry, 11(9), 1163–1182. https://doi.org/10.2174/0929867043365323
- Qui, N. H. (2023). Baker's yeast (Saccharomyces cerevisiae) and its application on poultry's production and health: A review. Iraqi Journal of Veterinary Sciences, 37(1), 213–221. https://doi.org/10.33899/ijvs.2022.132912.2146
- Roto, S. M., Rubinelli, P. M., & Ricke, S. C. (2015). An introduction to the avian gut microbiota and the effects of yeast-based prebiotic-type compounds as potential feed additives. Frontiers in Veterinary Science, 2, 28. https://doi.org/10.3389/fvets.2015.00028
- Sallam, S. M. A., Abdelmalek, M. L. R., Kholif, A. E., Zahran, S. M., Ahmed, M. H., Zeweil, H. S., Attia, M. F. A., Osama, H. M., & Olafadehan, O. A. (2020). The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Animal Biotechnology, 31(6), 491–497. https://doi.org/10.1080/10495398.2019.1625783
- Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., & Quigley, E. M. M. (2021). The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18, 649–667. https://doi.org/10.1038/s41575-021-00440-6
- Satoshi, S., Kiyoji, T., Hiroyo, K., & Fumio, N. (1989). Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. International Journal of Biochemistry, 21(8), 835–838. https://doi.org/10.1016/0020-711x(89)90280-2
- Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology, 235, 60–76. https://doi.org/10.1016/j.anifeedsci.2017.11.010
- Sivinski, S. E., Meier, K. E., Mamedova, L. K., Saylor, B. A., Shaffer, J. E., Sauls-Hiesterman, J. A., Yoon, I., & Bradford, B. J. (2022). Effect of Saccharomyces cerevisiae fermentation product on oxidative status, inflammation, and immune response in transition dairy cattle. Journal of Dairy Science, 105(11), 8850–8865. https://doi.org/10.3168/jds.2022-21998
- Spring, P., Wenk, C., Connolly, A., & Kiers, A. (2015). A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second-generation mannose-rich fraction, on farm and companion animals. Journal of Applied Animal Nutrition, 3, E8. https://doi.org/10.1017/jan.2015.6
- Suarez, C., & Guevara, C. A. (2018). Probiotic use of yeast Saccharomyces cerevisiae in animal feed. Research Journal of Zoology, 1, 1–6. https://doi.org/10.4172/RJZ.1000103
- Swyers, K. L., Wagner, J. J., Dorton, K. L., & Archibeque, S. L. (2014). Evaluation of Saccharomyces cerevisiae fermentation product as an alternative to monensin on growth performance, cost of gain, and carcass characteristics of heavyweight yearling beef steers. Journal of Animal Science, 92, 2538–2545. https://doi.org/10.2527/jas.2013-7559
- Tohid, T., Hasan, G., & Alireza, T. (2010). Efficacy of mannanoligosaccharides and humate on immune response to avian influenza (H9) disease vaccination in broiler chickens. Veterinary Research Communications, 34(8), 709–717. https://doi.org/10.1007/s11259-010-9444-8
- Tufail, M., Chand, N., Rafiullah, A. S., Khan, R. U., Mobashar, M., & Naz, S. (2019). Mannanoligosaccharide (MOS) in broiler diet during the finisher phase: 2. Growth traits and intestinal histomorphology. Pakistan Journal of Zoology, 51, 597–602. https://doi.org/10.17582/journal.pjz/2019.51.2.597.602
- USDA. Leavening agents, yeast, baker's, active dry.
- Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126–132. https://doi.org/10.1264/jsme2.ME14176
- Vyas, D., Uwizeye, A., Mohammed, R., Yang, W. Z., Walker, N. D., & Beauchemin, K. A. (2014). The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers. Journal of Animal Science, 92(2), 724–732. https://doi.org/10.2527/jas.2013-7072
- Wu, C., Yang, Z., Song, C., Liang, C., Li, H., Chen, W., Lin, W., & Xie, Q. (2018). Effects of dietary yeast nucleotides supplementation on intestinal barrier function, intestinal microbiota, and humoral immunity in specific-pathogen-free chickens. Poultry Science, 97(11), 3837–3846. https://doi.org/10.3382/ps/pey268
- Xiao, R., Power, R. F., Mallonee, D., Routt, K., Spangler, L., Pescatore, A. J., Cantor, A. H., Ao, T., Pierce, J. L., & Dawson, K. A. (2012). Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poultry Science, 91(7), 1660–1669. https://doi.org/10.3382/ps.2011-02035
- Zanello, G., Meurens, F., Serreau, D., Chevaleyre, C., Melo, S., Berri, M. D., Inca, R., Auclair, E., & Salmon, H. (2013). Effects of dietary yeast strains on immunoglobulin in colostrum and milk of sows. Veterinary Immunology and Immunopathology, 152, 20–27. https://doi.org/10.1016/j.vetimm.2012.09.023
- Zebeli, Q., & Ametaj, B. N. (2009). Relationships between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. Journal of Dairy Science, 92(8), 3800–3809. https://doi.org/10.3168/jds.2009-2178
- Zhang, A. W., Lee, B. D., Lee, S. K., Lee, K. W., An, G. H., Song, K. B., & Lee, C. H. (2005). Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poultry Science Journal, 84(7), 1015–1021. https://doi.org/10.1093/ps/84.7.1015
- Zhang, B., Guo, Y., & Wang, Z. (2008). The modulating effect of β-1, 3/1, 6-glucan supplementation in the diet on performance and immunological responses of broiler chickens. Asian-Australasian Journal of Animal Sciences, 21(2), 237–244. https://doi.org/10.5713/ajas.2008.70207
- Zhang, J., Wan, K., Xiong, Z. B., Luo, H., Zhou, Q. F., Liu, A. F., Cao, T. T., & He, H. (2021). Effects of dietary yeast culture supplementation on the meat quality and antioxidant capacity of geese. Journal of Applied Poultry Research, 30(1), 100116. https://doi.org/10.1016/j.japr.2020.100
Supplementary files
