Differential analysis of glycinin and β-conglycinin gene expression in seeds of cultivated soybean varieties at different periods of their maturation
- Authors: Penzin A.A.1, Timkin P.D.2, Kotelnikov D.D.1
-
Affiliations:
- All-Russian Scientific Research Institute of Soybean
- All-Russian Scientific Research Institute of Soybean 19, Ignatievskoe hw., Blagoveshchensk, 675028, Russian Federation
- Issue: Vol 17, No 3 (2025)
- Pages: 56-70
- Section: Plant Physiology and Biochemistry
- Published: 31.08.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/316199
- DOI: https://doi.org/10.12731/2658-6649-2025-17-3-1208
- EDN: https://elibrary.ru/ASXKXX
- ID: 316199
Cite item
Full Text
Abstract
Background. Soybeans are an economically important crop used in various industries, from human nutrition to animal feeding. The creation of new varieties with a high protein content or with a certain subunit composition more suitable for food and feed purposes is an urgent area for research. In this study, the differential expression of glycinin and β-conglycinin genes in seeds of various soybean varieties (Glycine max [L.] Merr) at different stages of maturation (R5-R8) was analyzed. Glycinin’s and β-conglycinins make up a significant part of the protein contained in soybeans, play an important role in seed germination and provide biotic protection. High-protein (Bride and Stately) and low-protein (Harmony and Dauria) varieties were analyzed in the study.
Purpose. To carry out a differential analysis of the expression of glycinin and β-conglycin genes in various phases of filling and maturation of seeds (R5-R8) of soybean varieties selected by the Federal State Budgetary Scientific Research Center of the Russian Research Institute of Soybeans with increased and decreased protein content.
Materials and methods. The selection of primers for the analysis of glycine genes (Gy1-5 and Gy7) and β-conglycinins (Cg1 and Cg3-4) was carried out using software that allows to achieve high specificity and the absence of secondary structures (dimers, hairpins), from RNA extracted from seeds, was cDNA was obtained using the necessary reagent kits, amplification of fragments and their detection were carried out on a CFX-96 thermo-cycler in real time.
Results. Primers have been developed suitable for analyzing the expression level of genes encoding different subunits of glycinins and β-conglycinins. Transcriptomic profiles of the studied subunits were obtained.
Conclusion. The results showed that high-protein varieties demonstrate increased expression of glycinin genes in the early stages of development, whereas low-protein varieties are characterized by increased expression of β-conglycinin genes. This opens up prospects for using data on gene expression in the selection of new soybean varieties, and may also be able to optimize the timing of soybean harvest for food production, depending on a certain subunit composition of proteins.
Keywords
About the authors
Andrey A. Penzin
All-Russian Scientific Research Institute of Soybean
Author for correspondence.
Email: penzin9898@mail.ru
Researcher
Russian Federation, 19, Ignatievskoe hw., Blagoveshchensk, 675028, Russian Federation
Pavel D. Timkin
All-Russian Scientific Research Institute of Soybean19, Ignatievskoe hw., Blagoveshchensk, 675028, Russian Federation
Email: tpd@vniisoi.ru
Junior Researcher
Russian Federation, Игнатьевское ш., 19, г. Благовещенск, 675028, Российская Федерация
Daniil D. Kotelnikov
All-Russian Scientific Research Institute of Soybean
Email: danil.kotelnikov.02@gmail.com
Laboratory Assistant
Russian Federation, 19, Ignatievskoe hw., Blagoveshchensk, 675028, Russian Federation
References
- Каталог сортов сои / Фокина, Е. М., Беляева, Г. Н., Синеговский, М. О. [и др.]. (2021). Благовещенск: ООО «ИПК «ОДЕОН». 69 с. (Catalog of soybean varieties / Fokina, E. M., Belyaeva, G. N., Sinegovsky, M. O. et al. (2021). Blagoveshchensk: LLC "IPC “ODEON”, 69 p.) ISBN: 978-5-6040714-5-8 EDN: https://elibrary.ru/qosjcx
- Badley, R. A., Atkinson, D., Hauser, H., Oldani, D., Green, J. P., & Stubb, J. M. (1975). The structure, physical and chemical properties of the soy bean protein glycinin. Biochim Biophys Acta, 412(2), 214-228. https://doi.org/10.1016/0005-2795(75)90036-7
- Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of microarray data using Z score transformation. J Mol Diagn, 5(2), 73-81. https://doi.org/10.1016/S1525-1578(10)60455-2
- Freitas, C. S., Vericimo, M. A., Silva, M. L., da Costa, G. C. V., Pereira, P. R., Paschoalin, V. M. F., & Del Aguila, E. M. (2019). Encrypted antimicrobial and antitumoral peptides recovered from a protein-rich soybean (Glycine max) by-product. Journal of Functional Foods, 54, 187-198. https://doi.org/10.1016/j.jff.2019.01.024
- Guo, B., Sun, L., Jiang, S., et al. (2022). Soybean genetic resources contributing to sustainable protein production. Theor Appl Genet, 135, 4095-4121. https://doi.org/10.1007/s00122-022-04222-9 EDN: https://elibrary.ru/fzjutt
- Hooker, J. C., Nissan, N., Luckert, D., Charette, M., Zapata, G., Lefebvre, F., Mohr, R. M., Daba, K. A., Warkentin, T. D., Hadinezhad, M., et al. (2023). A Multi-Year, Multi-Cultivar Approach to Differential Expression Analysis of High- and Low-Protein Soybean (Glycine max). Int. J. Mol. Sci., 24, 222. https://doi.org/10.3390/ijms24010222 EDN: https://elibrary.ru/fqyarx
- Hu, R., Fan, C., Li, H., et al. (2009). Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Molecular Biol, 10, 93. https://doi.org/10.1186/1471-2199-10-93 EDN: https://elibrary.ru/ybghyr
- Koressaar, T., Lepamets, M., Kaplinski, L., Raime, K., Andreson, R., & Remm, M. (2018). Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 34(11), 1937-1938. https://doi.org/10.1093/bioinformatics/bty036
- Li, C., & Zhang, Y. M. (2011). Molecular evolution of glycinin and β-conglycinin gene families in soybean (Glycine max L. Merr.). Heredity, 106, 633-641. https://doi.org/10.1038/hdy.2010.97
- Mulalapele, L. T., & Xi, J. (2021). Detection and inactivation of allergens in soybeans: A brief review of recent research advances. Grain & Oil Science and Technology, 4(4), 191-200. https://doi.org/10.1016/j.gaost.2021.11.001 EDN: https://elibrary.ru/xsoawf
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
- Ma, Y., Kan, G., Zhang, X., Wang, Y., Zhang, W., Du, H., & Yu, D. (2016). Quantitative Trait Loci (QTL) Mapping for Glycinin and β-Conglycinin Contents in Soybean (Glycine max L. Merr.). J Agric Food Chem, 64(17), 3473-3483. https://doi.org/10.1021/acs.jafc.6b00167
- Owczarzy, R., Tataurov, A. V., Wu, Y., Manthey, J. A., McQuisten, K. A., Almabrazi, H. G., Pedersen, K. F., Lin, Y., Garretson, J., McEntaggart, N. O., Sailor, C. A., Dawson, R. B., & Peek, A. S. (2008). IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res, 36(Web Server issue), W163-W169. https://doi.org/10.1093/nar/gkn198
- Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Nondenaturing Agarose Gel Electrophoresis of RNA. Cold Spring Harbor protocols, pdb.prot5445. https://doi.org/10.1101/pdb.prot5445
- Shea, Z., Singer, W., & Zhang, B. (2020). Soybean Production, Versatility, and Improvement. https://doi.org/10.5772/intechopen.91778
- Sui, X., Zhang, T., & Jiang, L. (2021). Soy protein: molecular structure revisited and recent advances in processing technologies. Annual Review of Food Science and Technology, 12(1), 119-147. https://doi.org/10.1146/annurev-food-062220-104405 EDN: https://elibrary.ru/dnsbtu
- Okonechnikov, K., Golosova, O., Fursov, M., & the UGENE team. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 28, 1166-1167. https://doi.org/10.1093/bioinformatics/bts091 EDN: https://elibrary.ru/pdnjnv
- Kim W, Kim S, Krishnan HB. Seed-Specific Silencing of Abundantly Expressed Soybean Bowman–Birk Protease Inhibitor Genes by RNAi Lowers Trypsin and Chymotrypsin Inhibitor Activities and Enhances Protein Digestibility. International Journal of Molecular Sciences. 2025; 26(14):6943. https://doi.org/10.3390/ijms26146943
- Wang, T., Qin, G.-X., Sun, Z.-W., & Zhao, Y. (2014). Advances of Research on Glycinin and β-Conglycinin: A Review of Two Major Soybean Allergenic Proteins. Critical Reviews in Food Science and Nutrition, 54, 850-862. https://doi.org/10.1080/10408398.2011.613534
- Xiang, N., Lyu, Y., Zhu, X., Bhunia, A. K., & Narsimhan, G. (2016). Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Peptides, 85, 27-40. PMID: 27612614. https://doi.org/10.1016/j.peptides.2016.09.004 EDN: https://elibrary.ru/xzcg
- Zhang, S., Du, H., Ma, Y., Li, H., Kan, G., & Yu, D. (2021). Linkage and association study discovered loci and candidate genes for glycinin and β-conglycinin in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 134(4), 1201-1215. https://doi.org/10.1007/s00122-021-03766-6 EDN: https://elibrary.ru/xkuijx
Supplementary files
