The effect of low temperatures and osmotic stress on the growth of lactic acid bacteria
- Authors: Nikiforova A.P.1, Khamagaeva I.S.2
-
Affiliations:
- ITMO University
- East Siberia State University of Technology and Management
- Issue: Vol 17, No 3 (2025)
- Pages: 169-187
- Section: Biochemistry, Genetics and Molecular Biology
- Published: 31.08.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/316240
- DOI: https://doi.org/10.12731/2658-6649-2025-17-3-1244
- EDN: https://elibrary.ru/ECLXVD
- ID: 316240
Cite item
Full Text
Abstract
Background. To date, the use of lactic acid bacteria has not found wide industrial application in the production of fish products. At the same time, the scientific direction associated with the development and use of bacterial cultures for the processing of fish products is highly relevant. Technological processes of fish processing often involve the use of high concentrations of NaCl and low positive temperatures; these factors inhibit the growth and development of most microorganisms. Therefore, the development of bacterial cultures to produce fish products should include the study of tolerance of probiotic strains to these stress factors. Latilactobacillus sakei species have great prospects for the use as bacterial cultures for fish products processing due to high biochemical activity and potential probiotic properties.
Purpose. The aim of the study was to study the resistance of Latilactobacillus sakei strains to high sodium chloride concentrations and low temperatures. The objects of the study were four strains of Latilactobacillus sakei.
Materials and methods. Cultivation of lactic acid bacteria was carried out on MRS medium at a temperature of 37 °C. The ability of bacteria to grow in the presence of sodium chloride was determined on MRS medium containing 12% NaCl, and the tolerance of bacteria to low positive temperatures was studied by strains cultivation at 8 °C.
Results. As a result of the studies, it was proven that the strains Llb. sakei LSK-45, Llb. sakei LSK-104, Llb. sakei LSK-103 can grow in the medium with a high concentration of NaCl (12%) and at low positive temperatures.
Conclusion. Thus, the use of Llb. sakei LSK-45, Llb. sakei LSK-104, Llb. sakei LSK-103 strains in the fish processing industry is of great scientific interest.
About the authors
Anna P. Nikiforova
ITMO University
Author for correspondence.
Email: anna.p.nikiforova@gmail.com
ORCID iD: 0000-0002-3003-8638
SPIN-code: 1595-7018
Scopus Author ID: 57194715586
ResearcherId: B-6798-2016
Cand. Sci. (Technology), Associate Professor of the Faculty of Biotechnologies
Russian Federation, 49A, Kronverksky Pr., St. Petersburg, 197101, Russian Federation
Irina S. Khamagaeva
East Siberia State University of Technology and Management
Email: ikhamagaeva@mail.ru
ORCID iD: 0000-0003-4294-5857
SPIN-code: 9964-4020
Scopus Author ID: 6506395213
Dr. Sci. (Technology), Professor
Russian Federation, 40V, building 1, Klyuchevskaya Str., Ulan-Ude, 670013, Russian Federation
References
- Nikiforova, A.P., Khazagaeva, S.N. & Artyukhova, S.I. (2019). Research of biochemical activity of Lactobacillus sakei LSK-104 strain. Vestnik VSGUTU, 4(75), 62-68. EDN: https://elibrary.ru/arivmh
- Nikiforova, A.P. (2020). Prospects for the production of fermented fish products using lactic acid bacteria. Technologies of Food and Processing Industry of Agro-Industrial Complex — Healthy Food Products, 2, 17-24. https://doi.org/10.24411/2311-6447-2020-10038 EDN: https://elibrary.ru/zejayp
- Oleskin, A.V. (2009). Biosociality of unicellular organisms (based on research of prokaryotes). Journal of General Biology, 70(3), 225-238. EDN: https://elibrary.ru/kavohr
- Ammor, S., Dufour, E., Zagorec, M., Chaillou, S. & Chevallier, I. (2005). Characterization and selection of Lactobacillus sakei strains isolated from traditional dry-sausage. Food Microbiology, 22, 529-538. https://doi.org/10.1016/j.fm.2004.11.016
- Bonaccio, M., Ruggiero, E., Castelnuovo, A.D., Costanzo, S., Persichillo, M., Curtis, A.D. & Iacoviello, L. (2017). Fish intake is associated with lower cardiovascular risk in a Mediterranean population: Prospective results from the Molisani study. Nutrition, Metabolism and Cardiovascular Diseases, 27, 865-873. https://doi.org/10.1016/j.numecd.2017.08.004
- Chai, H.J., Wu, C.J., Yang, S.H., Li, T.L. & Pan, B.S. (2016). Peptides from hydrolysate of lantern fish (Benthosema pterotum) proved neuroprotective in vitro and in vivo. Journal of Functional Foods, 24, 438-449. https://doi.org/10.1016/j.jff.2016.04.009
- Chaillou, S., Champomier-Vergès, M.C., Cornet, M., Crutz Le Coq, A.M., Dudzé, A.M., Martin, V., Beaufils, S., Bossy, R., Darbon-Rongère, E., Loux, V. et al. (2005). Complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nature Biotechnology, 23, 1527-1533. https://doi.org/10.1038/nbt1160
- Chen, J., Jayachandran, M., Bai, W. & Xu, B. (2022). A critical review on the health benefits of fish consumption and its bioactive constituents. Food Chemistry, 369, 130874. https://doi.org/10.1016/j.foodchem.2021.130874 EDN: https://elibrary.ru/fjsqlf
- Gao, X., Kong, J., Zhu, H., Mao, B., Cui, S. & Zhao, J. (2022). Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. Journal of Applied Microbiology, 132, 802-821. https://doi.org/10.1111/jam.15251 EDN: https://elibrary.ru/hezagp
- Gu, Y., Li, B., Tian, J., Wu, R. & He, Y. (2018). The response of LuxS/AI-2 quorum sensing in Lactobacillus fermentum 2-1 to changes in environmental growth conditions. Annals of Microbiology, 68, 287-294. https://doi.org/10.1007/s13213-018-1337-z EDN: https://elibrary.ru/llqblr
- Van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S.D. & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 82(1-4), 187-216. https://doi.org/10.1023/A:1020631532202 EDN: https://elibrary.ru/mcgexh
- Hossain, M.I. et al. (2021). Comprehensive molecular, probiotic, and quorum-sensing characterization of anti-listerial lactic acid bacteria, and application as bioprotective in a food (milk) model. Journal of Dairy Science, 104(6), 6516-6534. https://doi.org/10.3168/jds.2020-19034 EDN: https://elibrary.ru/dwfyde
- Kim, H.S., Oh, H., Kim, B. et al. (2023). Multifunctional effects of Lactobacillus sakei HEM 224 on the gastrointestinal tract and airway inflammation. Scientific Reports, 13, 17918. https://doi.org/10.1038/s41598-023-45043-0 EDN: https://elibrary.ru/cpgcrn
- Liu, S., Ma, Y., Zheng, Y., Zhao, W., Zhao, X., Luo, T., Zhang, J. & Yang, Z. (2020). Cold-Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis. Journal of Microbiology and Biotechnology, 30(2), 187-195. https://doi.org/10.4014/jmb.1909.09021 EDN: https://elibrary.ru/slpyzn
- Marceau, A., Zagorec, M. & Champomier-Vergès, M.C. (2003). Positive effects of growth at suboptimal temperature and high salt concentration on long-term survival of Lactobacillus sakei. Research in Microbiology, 154, 37-42. https://doi.org/10.1016/S0923-2508(02)00010-4
- Miller, M.B. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
- Montanari, C., Barbieri, F., Magnani, M., Grazia, L., Gardini, F. & Tabanelli, G. (2018). Phenotypic Diversity of Lactobacillus sakei Strains. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02003
- Nikiforova, A., Zamaratskaia, G. & Pickova, J. (2020). Fatty acid composition of salted and fermented products from Baikal omul (Coregonus autumnalis migratorius). Journal of Food Science and Technology, 57, 595-605. https://doi.org/10.1007/s13197-019-04091-z EDN: https://elibrary.ru/zmeach
- Qian, X., Tian, P., Zhao, J., Zhang, H., Wang, G. & Chen, W. (2022). Quorum Sensing of Lactic Acid Bacteria: Progress and Insights. Food Reviews International, 39(7), 4781-4792. https://doi.org/10.1080/87559129.2022.2062766 EDN: https://elibrary.ru/mhdkzq
- Skåra, T., Axelsson, L., Stefansson, G., Ekstrand, B. & Hagen, H. (2015). Fermented and ripened fish products in the northern European countries. Journal of Ethnic Foods, 2(1), 18-24. https://doi.org/10.1016/j.jef.2015.02.004
- Song, E.J., Lee, E.S., Park, S.L., Choi, H.J., Roh, S.W. & Nam, Y.D. (2018). Bacterial community analysis in three types of the fermented seafood, jeotgal, produced in South Korea. Bioscience, Biotechnology and Biochemistry, 82(8), 1444-1454. https://doi.org/10.1080/09168451.2018.1469395
- Speranza, B., Racioppo, A., Bevilacqua, A., Beneduce, L., Sinigaglia, M. & Corbo, M.R. (2015). Selection of Autochthonous Strains as Starter Cultures for Fermented Fish Products. Journal of Food Science, 80(1), M151-M160. https://doi.org/10.1111/1750-3841.12721
- Tajdozian, H., Seo, H., Jeong, Y. et al. (2024). Efficacy of lyophilized Lactobacillus sakei as a potential candidate for preventing carbapenem-resistant Klebsiella infection. Annals of Microbiology, 74(28). https://doi.org/10.1186/s13213-024-01773-8 EDN: https://elibrary.ru/ywbksc
- Trunk, T., Khalil, H.S. & Leo, J.C. (2018). Bacterial autoaggregation. AIMS Microbiology, 4(1), 140-164. https://doi.org/10.3934/microbiol.2018.1.140
- Yang, H., He, M. & Wu, C. (2021). Cross protection of lactic acid bacteria during environmental stresses: Stress responses and underlying mechanisms. LWT, 144, 111203. https://doi.org/10.1016/j.lwt.2021.111203 EDN: https://elibrary.ru/nvykru
- Zagorec, M. & Champomier-Vergès, M.C. (2017). Lactobacillus sakei: A Starter for Sausage Fermentation, a Protective Culture for Meat Products. Microorganisms, 5(3), 56. https://doi.org/10.3390/microorganisms5030056
- Zou, X., Pan, L., Xu, M., Wang, X., Wang, Q. & Han, Y. (2023). Probiotic potential of Lactobacillus sakei L-7 in regulating gut microbiota and metabolism. Microbiological Research, 274, 127438. https://doi.org/10.1016/j.micres.2023.127438 EDN: https://elibrary.ru/dbxzls
Supplementary files
