Biological activity of binary triazole preparations on soft spring wheat

Cover Page

Cite item

Full Text

Abstract

Background. Integrated plant protection against diseases, pests and weeds is the most important element of agricultural technology. The use of fungicides is important not only to increase plant yields, but also to obtain high-quality crops. Most chemical plant protection products (CPPP) include molecules of organic compounds as active ingredients (AI), which are poorly soluble in water, which requires the development of formulations for them that allow for the uniform application of AI to plants and effectively protect them from diseases and pests.

Materials and methods. To solve the problems of resistance, it is proposed to develop multi-component and polyfunctional seed dressings for grain crops using mechanochemical methods. The compositions obtained using this technology in the form of solid dispersions had increased solubility and a wide range of biological activity. The objects of study were triazole derivatives - tebuconazole and propiconazole, polysaccharide arabinogalactan and plant growth regulators.

Results. The experimental compositions obtained in the work had a strong retardant effect on sprouts of soft spring wheat of the Novosibirskaya 31 variety. The addition of the known growth stimulator floroxan and a biostimulant in the form of silica did not help to remove this retardant effect, although the softening effect of floroxan was previously shown when using compositions based on tebuconazole.

Conclusion. The use of mechanochemical modification methods for a number of triazole derivatives made it possible to obtain compositions that significantly inhibited root formation and shortened sprouts, caused abnormal germination of grains, which ultimately affected germination, as well as the accumulation of biomass in sprouts and seedlings. The obtained results confirm the prospects for the development of multicomponent drugs using mechanochemical methods to solve the problems of resistance, solubility and expansion of biological activity.

About the authors

Natalia G. Vlasenko

Siberian Research Institute of Agriculture and Chemicalization of Agriculture SFSCA RAS

Author for correspondence.
Email: adelinakorob@mail.ru

Doctor of Biological Sciences, Academician of the Russian Academy of Sciences, Professor

 

Russian Federation, Krasnoobsk, Novosibirsk district, Novosibirsk region, 630501, Russian Federation

Salavat S. Khalikov

A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

Email: khalikov_ss@ineos.ac.ru
ORCID iD: 0000-0002-4736-5934

Doctor of Technical Sciences, Senior Researcher

 

Russian Federation, 28, bld. 1, Vavilova Str., Moscow, 119334, Russian Federation

Olga I. Teplyakova

Siberian Research Institute of Agriculture and Chemicalization of Agriculture SFSCA RAS

Email: rudol4757@mail.ru
ORCID iD: 0009-0002-7322-1157

Candidate of Biological Sciences

 

Russian Federation, Krasnoobsk, Novosibirsk district, Novosibirsk region, 630501, Russian Federation

Marat S. Khalikov

A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

Email: marat1988@ineos.ac.ru
ORCID iD: 0000-0002-3014-7383

Research Fellow at the Laboratory of Physiologically Active Organofluorine Compounds

 

Russian Federation, 28, bld. 1, Vavilova Str., Moscow, 119334, Russian Federation

Nikolay D. Chkanikov

A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)

Email: nchkan@ineos.ac.ru
Scopus Author ID: 0000-0003-1660-9223

Doctor of Chemical Sciences

 

Russian Federation, 28, bld. 1, Vavilova Str., Moscow, 119334, Russian Federation

References

  1. Burlakova, S. V., Vlasenko, N. G., Chkanikov, N. D., & Khalikov, S. S. (2020). Effect of multicomponent seed dressings on infestation of spring wheat seed material with phytopathogens and phytocenosis. Agrochemistry, (5), 72-79. https://doi.org/10.31857/S000218812005004X EDN: https://elibrary.ru/fnuavg
  2. Vlasenko, N. G. (2008). On the issue of agricultural technologies in general and phytosanitary technologies in particular. Plant Protection News, (2), 3-10. EDN: https://elibrary.ru/juzdzr
  3. Vlasenko, N. G., Burlakova, S. V., Khalikov, S. S., Fedorovsky, O. Yu., & Chkanikov, N. D. (2017). Floroxan as a potential component of complex seed dressings for cereal crops. Agrochemistry, (7), 49-54. https://doi.org/10.7868/S0002188117070079 EDN: https://elibrary.ru/ytglof
  4. Vlasenko, N. G., Burlakova, S. V., Fedorovsky, O. Yu., Chkanikov, N. D., & Khalikov, S. S. (2018). Complex fungicide based on phenylamides and azoles for protection of spring wheat seed material. Agrochemistry, (10), 40-45. https://doi.org/10.1134/S0002188118100149 EDN: https://elibrary.ru/ymfrit
  5. Vlasenko, N. G., Burlakova, S. V., Chkanikov, N. D., & Khalikov, S. S. (2019). Fungicidal seed dressing based on azoles for treatment of cereal crop seeds. Agrochemistry, (6), 44-49. https://doi.org/10.1134/S0002188119020145 EDN: https://elibrary.ru/kltomc
  6. Ganiev, M. M., & Nedorezkov, V. D. (2006). Plant protection chemicals. Moscow: KolosS, 248 p.
  7. Golubtsov, D. N., Zhizhina, E. Yu., & Melkumova, E. A. (2022). Efficiency of multicomponent fungicides against harmful mycoses of winter wheat. Bulletin of Voronezh State Agrarian University, 15(3), 79-86. https://doi.org/10.53914/issn2071-2243_2022_3_79 EDN: https://elibrary.ru/sshetc
  8. Kekalo, A. Yu., Nemchenko, V. V., Zargaryan, N. Yu., & Filippov, A. S. Phytosanitary problems of wheat field and effectiveness of plant disease control agents. Agrochemistry, (10), 45-50. https://doi.org/10.31857/S0002188120100038 EDN: https://elibrary.ru/vvnajo
  9. Kekalo, A. Yu., Khalikov, S. S., Ilyin, M. M., Chkanikov, N. D., & Zargaryan, N. Yu. (2023). Combined triazole seed dressings and their effect on growth and development of spring wheat seedlings. Agrochemistry, (10), 55-62. https://doi.org/10.31857/S0002188123100071 EDN: https://elibrary.ru/lfqapw
  10. Kekalo, A. Yu., Khalikov, S. S., Ilyin, M. M., Chkanikov, N. D., & Zargaryan, N. Yu. (2023). Combined triazole seed dressings and their effect on growth and development of spring wheat seedlings. Agrochemistry, (10), 55-62. https://doi.org/10.31857/S0002188123100071 EDN: https://elibrary.ru/lfqapw
  11. Malyuga, A. A., Chulikova, N. S., & Khalikov, S. S. (2020). Efficiency of innovative preparations based on tebuconazole, thiram, and carbendazim against potato diseases. Agrochemistry, (7), 57-67. https://doi.org/10.31857/S000218812007008X EDN: https://elibrary.ru/rwrcmh
  12. Matychenkov, V. V., Bocharnikova, E. A., Pirogovskaya, G. V., & Ermolovich, I. E. (2022). Prospects for using silicon preparations in agriculture (review). Soil Science and Agrochemistry, 1(68), 219-234. https://doi.org/10.47612/0130-8475-2022-1(68)-219-234 EDN: https://elibrary.ru/rmuzpg
  13. Tyuterev, S. L. (2001). Problems of phytopathogen resistance to new fungicides. Plant Protection News, (1), 38-53. EDN: https://elibrary.ru/zisgcp
  14. Khalikov, S. S., Teplyakova, O. I., & Vlasenko, N. G. (2022). Effect of tebuconazole formulations on phytosanitary condition of treated seeds, growth, and development of spring wheat seedlings. Agrochemistry, (2), 45-55. https://doi.org/10.31857/S0002188122020065 EDN: https://elibrary.ru/owibsl
  15. El-Sayed, S.A. & Abdel-Monaim, M.F. (2017). Integrated control management of root rot disease in lupine plants by using some bioagents, chemical inducers and fungicides. Plant. Sci. Agr. Res., 1(1:2), 1-8.
  16. Campbell, B.C., Chan, K.L. & Kim, J.H. (2012). Chemosensitization as a means to augment commercial antifungal agents. Frontiers in Microbiology, 3:79, 1-20. https://doi.org/10.3389/fmicb.2012.00079 EDN: https://elibrary.ru/rmslyr
  17. Dzhavakhiya, V., Shcherbakova, L., Semina, Y., Zhemchuzhina, N. & Campbell, B. (2012). Chemosensitization of plant pathogenic fungi to agricultural fungicides. Frontiers in Microbiology, 3:87, 1-9. https://doi.org/10.3389/fmicb.2012.00087 EDN: https://elibrary.ru/rgbomt
  18. Dzhavakhiya, V.G., Voinova, T.M., Statsyuk, N.V. & Shcherbakova, L.A. (2019). Sensitization of plant pathogenic fungi to the tebuconazole-based commercial fungicide using some analogues of natural amino acids. AIP Conference Proceedings, 2063(1):030005, 1-6. https://doi.org/10.1063/1.5087313 EDN: https://elibrary.ru/yxkoap
  19. Karakotov, S.D. & Saraev, P.V. (2019). Preparative forms of modern pesticides. Adaptively-integrated plant protection. Moscow: Printing city, 65-76.
  20. Khalikov, S.S. & Dushkin, A.V. (2020). Strategies for Solubility Enhancement of Anthelmintics (Review). Pharmaceutical Chemistry Journal, 54(5), 504-508. https://doi.org/10.1007/s11094-020-02229-4 EDN: https://elibrary.ru/acavrf
  21. Lucas, J.A., Hawkins, N.J. & Fraaije, B.A. (2015). The evolution of fungicide resistance. Advances in Applied Microbiology, 90, 29-92. https://doi.org/10.1016/bs.aambs.2014.09.001 EDN: https://elibrary.ru/yeyuvv
  22. Montfort, F., Klepper, B.L. & Smiley, R.W. (1996). Effects of two triazole seed treatments, triticonazole and triadimenol, on growth and development of wheat. Pest Manag. Sci., 46, 299-306. https://doi.org/10.1002/(SICI)1096-9063(199604)46:4<315::AID-PS369>3.0.CO;2-R
  23. Oliver, R.P. (2014). A reassessment of the risk of rust fungi developing resistance to fungicides. Pest. Manag. Sci., 70, 1641-1645. https://doi.org/10.1002/ps.3767
  24. Selyutina, O.Y., Khalikov, S.S. & Polyakov, N.E. (2020). Arabinogalactan and glycyrrhizin based nanopesticides as novel delivery systems for plant protection. Environmental Science and Pollution Research, 27, 5864-5872. https://doi.org/10.1007/s11356-019-07397-9 EDN: https://elibrary.ru/vziehf
  25. Vlasenko, N.G., Khalikov, S.S. & Burlakova, S.V. (2020). Flexible Technology of Protectants for Grain Seeds. IOP Conference Series: Earth and Environmental Science, 548 082003, 1-10. https://doi.org/10.1088/1755-1315/548/8/082003 EDN: https://elibrary.ru/udhhri

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».