Study of the effect of gamma radiation on the antibiotic activity of osmotic microbiota in some types of urbechs
- Authors: Timakova R.T.1, Khlopov A.A.2, Lybenko E.S.2, Nikitin S.O.3
-
Affiliations:
- Ural State Economic University
- Vyatka State Agrotechnological University
- "RCOT "Era" LLC
- Issue: Vol 17, No 3 (2025)
- Pages: 424-452
- Section: Interdisciplinary Research
- Published: 31.08.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/316319
- DOI: https://doi.org/10.12731/2658-6649-2025-17-3-1133
- EDN: https://elibrary.ru/XYAEUQ
- ID: 316319
Cite item
Full Text
Abstract
Background. “Urbech” – traditional national product of Dagestan peoples recently found increasing popularity among adherents of a healthy diet. Urbech made according to traditional recipes retains its properties when stored for more than 1-2 years. Nowadays urbech range is constantly expanding. Some of the new types of urbech can spoil in 5-7 days.
Materials and methods. The samples of urbech made from coconut flakes and dried mulberries spoiled most quickly, peanut urbech with grated cocoa beans and date syrup, and sesame urbech with honey. The urbech has been treated with antioxidants and mild preservatives and has been exposed to gamma radiation. Using standard methods, the authors have determined humidity, pH, acid number of fat, viscosity, the number of pathogenic microorganisms, including salmonella, QMAFAnM, coliform bacteria, yeast and moldy fungi, osmophilic yeast.
Results. The introduction of antioxidants has increased the best before date of urbech by 7-14 days. Mild preservatives have had no effect on increasing the best before date of nut butter. The drug Polybiom has increased the best before date of urbech by 21-28 days. The study of the urbech microbiological indicators with obvious signs of spoilage has shown that the number of pathogenic microorganisms, including salmonella, QMAFAnM, coliform bacteria, molds and yeasts does not exceed the values regulated in TR CU 021/2011. Treatment of the urbech with gamma radiation has shown that the radiation dose of more than 2 kGy leads to the change in its organoleptic properties. Osmoresistant microorganisms are present in all the variants. Compared to the control samples, with an increase in the radiation dose, the osmophilic microflora decreases from 10 to 55 times.
Conclusion. During the storage of newly developed types of urbech, it has been found out that its spoilage is not associated with the natural processes of fat oxidation. No microorganisms above the values regulated in TR CU 021 have been found in the urbech. Osmophilic microorganisms develop in the experimental samples of the urbech. Gamma irradiation of urbech at a dosage permissible for food up to 10 kGy reduces the amount of osmophilic microflora up to 55 times. When treated with radiation at a dose of up to 2 kGy, the urbech organoleptic properties are preserved. Accordingly, the treatment with ionizing radiation at the doses up to 2 kGy is effective for preserving organoleptic and microbiological parameters urbechs, including osmophilic yeast, which is not regulated by the regulatory documents in the Russian Federation, for a certain period of storage. To study the causes of the urbech spoilage, further detailed studies of microorganisms and their metabolic products are required.
About the authors
Roza T. Timakova
Ural State Economic University
Author for correspondence.
Email: trt64@mail.ru
ORCID iD: 0000-0002-4777-1465
SPIN-code: 7663-1784
Scopus Author ID: 57203766629
ResearcherId: C-3922-2018
Doctor of Technical Sciences, Associate Professor
Russian Federation, 62, 8 Marta Str., Ekaterinburg, 620144, Russian Federation
Andrey A. Khlopov
Vyatka State Agrotechnological University
Email: akhlopov@yandex.ru
ORCID iD: 0009-0003-3774-4329
Candidate of Agricultural Sciences
Russian Federation, 133, Oktyabrsky Ave., Kirov, 610017, Russian Federation
Elena S. Lybenko
Vyatka State Agrotechnological University
Email: elenalybenko@rambler.ru
ORCID iD: 0000-0001-8853-1903
Candidate of Agricultural Sciences, Associate Professor
Russian Federation, 133, Oktyabrsky Ave., Kirov, 610017, Russian Federation
Sergey O. Nikitin
"RCOT "Era" LLC
Email: era@po-mayak.ru
General Director
Russian Federation, 16, room 201, Seventh line, Ozersk, Chelyabinsk region, 456780, Russian Federation
References
- Yagafar, M. K., Gainutdinov, T. R., Idrisov, A. M., Rakhmatullina, G. I., Yunusov, I. R. (2022). Assessment of biological safety of irradiated feed and food products. Veterinary Doctor, (2), 21-28. https://doi.org/10.33632/1998-698 EDN: https://elibrary.ru/thkguc
- Bulatova, A. G., Sergeeva, G. A. (2021). Traditional food culture of the peoples of Dagestan. Moscow: Prospekt. 96 p. ISBN: 978-5-392-34147-4. EDN: https://elibrary.ru/sjdyb
- Danyo, E. K., Ivantsova, M. N., Selezneva, I. S. (2024). Ionizing radiation effects on microorganisms and its applications in the food industry. Foods and Raw Materials, 12(1), 1-12. https://doi.org/10.21603/2308-4057-2024-1-583 EDN: https://elibrary.ru/xicyhk
- Kushch, I. V., Vanner, N. E., Udavliev, D. I., Muradova, M. D. (2019). Microbiological safety of honey. Health, Food & Biotechnology, 1(3), 106-117. https://doi.org/10.36107/hfb.2019.i3.s267 EDN: https://elibrary.ru/syvgzy
- Mordkovich, Ya. B., Baranova, L. I. (2023). Prospects for using radiation disinsection for quarantine phytosanitary disinfection. Phytosanitary. Plant Quarantine, (3), 60-64. https://doi.org/10.69536/u8906-0079-0762-a EDN: https://elibrary.ru/xrbxzc
- Ramazanova, Z. B., Gadzhalova, F. A. (2023). Dagestan traditional dishes and food products as a marker of folk culture and regional brand. Heritage of Ages, (2), 31-45. https://doi.org/10.36343/SB.2023.34.2.002 EDN: https://elibrary.ru/iytxow
- Sarukhanov, V. Ya., Shesterikov, A. Yu., Pomyasova, M. G., Kharlamov, V. A., Polyakova, I. V., Karpenko, E. I. (2022). Systematization of experimental research results and creation of the database «Radiation processing of agricultural raw materials and food products». Radiation and Risk (Bulletin of the National Radiation and Epidemiological Register), 31(3), 37-47. https://doi.org/10.21870/0131-3878-2022-31-3-37-47 EDN: https://elibrary.ru/adzlir
- Nechaev, A. P., Samoylov, A. V., Bessonov, V. V., Nikolaeva, Yu. V., Tarasova, V. V., Pilipenko, O. V. (2020). Influence of antioxidants in native and micellated forms on shelf life of emulsion fat product. Voprosy Pitania, 89(5), 101-109. https://doi.org/10.24411/0042-8833-2020-10070 EDN: https://elibrary.ru/wwgvza
- Bliznyuk, U. A., Borshchegovskaya, P. Yu., Zubritskaya, Ya. V., Ipatova, V. S., Malyuga, A. A., Rozanov, V. V., Chernyaev, A. P., Chulikova, N. S., Yurov, D. S. (2023). Effect of ionizing radiation on germination and biometric indicators of oilseed crops. Technologies of Living Systems, 20(1), 79-89. https://doi.org/10.18127/j.20700997-202301-09 EDN: https://elibrary.ru/ouawqp
- Timakova, R. T., Tikhonov, S. L., Tikhonova, N. V. (2020). Ionizing radiation treatment as an innovative process approach in food storage technology for modern agriculture. IOP Conference Series: Earth and Environmental Science, 421(2):022015. https://doi.org/10.1088/1755-1315/421/2/022015. EDN: https://elibrary.ru/uxncvj
- Timakova, R., Akulich, A., Samuylenko, T. (2021). The role of biotechnology in ensuring the preservation of dry composite mixtures. E3S Web of Conferences, 254:10018. https://doi.org/10.1051/e3sconf/202125410018. EDN: https://elibrary.ru/ugnqm
- Timakova, R., Efremova, S., Zuparova, V. (2021). Ways to improve the technological properties of commercial grain and ensure its preservation. AIP Conference Proceedings, 2419:020017. https://doi.org/10.1063/5.0069615. EDN: https://elibrary.ru/hlylxv
- Тутельян, В. А. (2012). Химический состав и калорийность российских продуктов питания: Справочник. М.: Дели Принт. 283 с. ISBN: 978-5-905170-20-1. EDN: https://elibrary.ru/qmcskv
- Ahmad, F., Mohammad, Z. H., Zaidi, S. F., Ibrahim, S. A. (2023). A comprehensive review on the application of ultrasound for the preservation of fruits and vegetables. Journal of Food Process Engineering, 46(6), 1-27. https://doi.org/10.1111/jfpe.14291. EDN: https://elibrary.ru/uwgvee
- Medvid, O. O., Peredera, Zh. O., Shcherbakova, N. S., Peredera, S. B. (2023). Analysis of the Italian honey market. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 25(112), 16-21. https://doi.org/10.32718/nvlvet11202. EDN: https://elibrary.ru/uingcb
- Andersen, N. R., Petersen, R. van D, Frost, M. B. (2022). Consumer interest in hummus made from different pulses: Effects of information about origin and variety seeking tendency. International Journal of Gastronomy and Food Science, 29(1):100572. https://doi.org/10.1016/j.ijgfs.2022.100572. EDN: https://elibrary.ru/fxcjkx
- Anderson, N. M. (2018). Recent Advances in Low Moisture Food Pasteurization. Current Opinion in Food Science. https://doi.org/10.1016/j.cofs.2018.11.001
- Coulombe, G., Tamber, S. (2022). Salmonella enterica Outbreaks Linked to the Consumption of Tahini and Tahini-Based Products. Microorganisms, 10(11):2299. https://doi.org/10.3390/microorganisms10112299. EDN: https://elibrary.ru/jgroig
- Mousavi, Z. E., Hunt, K., Koolman, L., Butler, F., Fanning, S. (2023). Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms, 11, 2-24. https://doi.org/10.3390/microorganisms11061379. EDN: https://elibrary.ru/nsjdza
- Davidson, A. (2014). The Oxford Companion to Food. Oxford: University Press. 921 p. (pp. 802-803). https://doi.org/10.1093/acref/9780199677337.001.0001
- Lang, E., Rhee, M. S., Gonçalves, M. P. M. B. B., Sant’Ana, A. A. (2023). Desiccation strategies of Cronobacter sakazakii to survive in low moisture foods and environment. Trends in Food Science & Technology. 104241. https://doi.org/10.1016/j.tifs.2023.104241. EDN: https://elibrary.ru/ucorby
- Al-Qadiri, H., Amr, A., Al-Holy, M. A., Shahein, M. (2021). Effect of gamma irradiation against microbial spoilage of hummus preserved under refrigerated storage. Food Science and Technology International, 27(7), 598-607. https://doi.org/10.1177/1082013220975891. EDN: https://elibrary.ru/kjvtfd
- Esen, E., Turga, Ö. (2023). Prevention of the Growth of Salmonella Spp. and Listeria Spp. in Tahini by Using Antagonistic Microorganisms. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 38(1), 26-39. https://doi.org/10.36846/CJAFS.2023.96. EDN: https://elibrary.ru/hmxuhs
- Grasso, E. M., Stam, C. N., Anderson, N. M., Krishnamurthy, K. (2014). Heat and steam treatments. In: The microbiological safety of low water activity foods and spices. Springer. P. 403-426. https://doi.org/10.1007/978-1-4939-2062-4_21
- Al-Nabulsi, A. A., Osaili, T. M., Olaimat, A. N., Almasri, W. E., Ayyash, M., Al-Holy, M. A., Jaradat, Z. W., Obaid, R. S., Holley, R. A. (2020). Inactivation of Salmonella spp. in tahini using plant essential oil extracts. Food microbiology, 86:103338. https://doi.org/10.1016/j.fm.2019.103338. EDN: https://elibrary.ru/zrezxq
- Olaimat, A. N., Al-Nabulsi, A. A., Osaili, T. M., Al-Holy, M., Ghoush, M. A., Alkhalidy, H., Jaradat, Z. W., Ayyash, M., Holley, R. A. (2022). Inactivation of stressed Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in hummus using low dose gamma irradiation. Journal of Food Science, 87(2), 845-855. https://doi.org/10.1111/1750-3841.16036. EDN: https://elibrary.ru/pyndjc
- Loots, M., Chidamba, L., Korsten, L. (2021). Microbial load and prevalence of Escherichia coli and Salmonella spp. in macadamia nut production systems. Journal of Food Protection, 84(6), 1088-1096. https://doi.org/10.4315/JFP-20-238. EDN: https://elibrary.ru/dczecw
- Mainardi, P. H., Bidoia, E. D. (2024). Food safety management: preventive strategies and control of pathogenic microorganisms in food. European Journal of Biological Research, 14(1), 13-32. https://doi.org/10.5281/zenodo.10724672
- Topcam, H., Coşkun, E., Son, E., Kütük, D., Aytaç, S. A., Mert, B., Ozturk, S., Erdogdu, F. (2023). Microwave decontamination processing of tahini and process design considerations using a computational approach. Innovative Food Science & Emerging Technologies, 86:103137. https://doi.org/10.1016/j.ifset.2023.103377. EDN: https://elibrary.ru/ahugmg
- Osaili, T. M., Al-Nabulsi, A. A., Aljaafreh, T. F. (2018). Use of gamma radiation to inactivate stressed Salmonella spp., Escherichia coli O157:H7 and Listeria monocytogenes in tahini halva. Food Microbiology, 278, 20-25. https://doi.org/10.1016/j.ijfoodmicro.2018.04.029
- Sánchez-Maldonado, A. F., Lee, A., Farber, J. M. (2018). Methods for the control of foodborne pathogens in low-moisture foods. Annual Review of Food Science and Technology, 9, 177-208. https://doi.org/10.1146/annurev-food-030117-012304. EDN: https://elibrary.ru/vhacny
- Olaimat, A. N., Al-Holy, M. A., Abughoush, M. H., Daseh, L., Al-Nabulsi, A. A., Osaili, T. M., Al-Rousan, W., Maghaydah, S., Ayyash, M., Holley, R. A. (2023). Survival of Salmonella enterica and Listeria monocytogenes in date palm paste and syrup at different storage temperatures. Journal of Food Science, 88(7), 2950-2959. https://doi.org/10.1111/1750-3841.16620. EDN: https://elibrary.ru/xbxxgn
- Szpinak, V., Ganz, M., Yaron, S. (2022). Factors affecting the thermal resistance of Salmonella Typhimurium in tahin. Food Research International, 155:111088. https://doi.org/10.1016/j.foodres.2022.111088. EDN: https://elibrary.ru/lrpofk
- Al-Nabulsi, A. A., Olaimat, A. N., Osaili, T. M., Shaker, R. R., Elabedeen, N. Z., Jaradat, Z. W., Abushelaibi, A., Holley, R. A. (2014). Use of acetic and citric acids to control Salmonella Typhimurium in tahini (sesame paste). Food Microbiology, 42, 102-108. https://doi.org/10.1016/j.fm.2014.02.020
Supplementary files
