Causes of emergence, mechanisms, rate of development, pathways of spread, and consequences of antibiotic resistance
- Authors: Vedeneev P.A.1, Buhler A.V.1,2, Lebedeva I.A.3, Kovaleva E.G.1
-
Affiliations:
- Ural Federal University
- Ural State University of Economics
- Ural Federal Agrarian Research Center, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 17, No 3 (2025)
- Pages: 579-613
- Section: Scientific Reviews and Reports
- Published: 31.08.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/316327
- DOI: https://doi.org/10.12731/2658-6649-2025-17-3-1131
- EDN: https://elibrary.ru/YWNYKM
- ID: 316327
Cite item
Full Text
Abstract
The problem of antibiotic resistance is more relevant than ever. The crisis associated with the spread of resistance to antibiotics is approaching every day. New antibacterial drugs and methods that allow for effective combating of resistant microorganisms are not emerging, therefore posing a serious challenge to humanity, as the effectiveness of antibiotics directly impacts important areas of human life such as medicine and agriculture.
Purpose. The article provides a systematic view of the phenomenon of antibiotic resistance.
Materials and methods. To analyze the literature, materials from the PubMed and PubMed Central resources of the US National Library of Medicine, Google Scholar, Elsevier Clinical Key and Elsevier Science Direct. The sample consisted of scientific papers devoted to antibiotic resistance.
Results. The article reveals the causes of emergence, mechanisms, rate of development, pathways of spread of antibiotic resistance and consequences of acquiring resistance for microorganisms and methods of containing antibiotic resistance.
About the authors
Pavel A. Vedeneev
Ural Federal University
Author for correspondence.
Email: p.a.vedeneev@urfu.ru
postgraduate student
Russian Federation, 19, Mira Str., Ekaterinburg, 620002, Russian Federation
Aleksey V. Buhler
Ural Federal University; Ural State University of Economics
Email: zellist@mail.ru
PhD in Chemistry, Associate Professor
Russian Federation, 19, Mira Str., Ekaterinburg, 620002, Russian Federation; 62, 8 Marta Str., Ekaterinburg, 620144, Russian Federation
Irina A. Lebedeva
Ural Federal Agrarian Research Center, Ural Branch of the Russian Academy of Sciences
Email: ialebedeva@yandex.ru
Doctor of Biological Sciences, Leading Researcher, Laboratory of Veterinary Technologies and Bioengineering
Russian Federation, 112a, Belinsky Str., Ekaterinburg, 620061, Russian Federation
Elena G. Kovaleva
Ural Federal University
Email: e.g.kovaleva@urfu.ru
Doctor of Chemical Sciences, Associate Professor
Russian Federation, 19, Mira Str., Ekaterinburg, 620002, Russian Federation
References
- Всемирная организация здравоохранения. (2014). Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам (World Health Organization. (2014). WHO global strategy for containment of antimicrobial resistance). Получено из https://iris.who.int/handle/10665/91617?locale-attribute=ru&
- Всемирная организация здравоохранения. (2015). Глобальный план действий по борьбе с устойчивостью к противомикробным препаратам (World Health Organization. (2015). Global action plan on antimicrobial resistance). Получено из https://www.who.int/ru/publications/i/item/9789241509763
- Национальная ассоциация специалистов по контролю инфекций (НАСКИ). Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи (National Association of Infection Control Specialists (NASCI). SCAT Program (Antimicrobial Therapy Control Strategy) in hospital care). Получено из https://nasci.ru/?id=4236
- Правительство Российской Федерации. (2017). Распоряжение № 2045-р от 3 октября 2017 г. Об утверждении Стратегии предупреждения распространения антимикробной резистентности (Government of the Russian Federation. (2017). Order No. 2045-r dated October 3, 2017. On approval of the Strategy for preventing the spread of antimicrobial resistance).
- Химическая энциклопедия (Том 4). (1995). Под ред. Н. С. Зефирова. Москва: Большая Российская энциклопедия. 639 с. (Chemical Encyclopedia (Vol. 4). (1995). Ed. by N. S. Zefirov. Moscow: Great Russian Encyclopedia. 639 p.)
- Ahlstrom, C. A., van Toor, M. L., Woksepp, H., Chandler, J. C., Reed, J. A., Reeves, A. B., Waldenström, J., Franklin, A. B., Douglas, D. C., Bonnedahl, J., & Ramey, A. M. (2021). Evidence for continental-scale dispersal of antimicrobial resistant bacteria by landfill-foraging gulls. The Science of the Total Environment, 764. https://doi.org/10.1016/j.scitotenv.2020.144551 EDN: https://elibrary.ru/rsowgv
- Ahmad, M., & Khan, A. U. (2019). Global economic impact of antibiotic resistance: A review. Journal of Global Antimicrobial Resistance, 19, 313-316. https://doi.org/10.1016/j.jgar.2019.05.024
- Akhtar, M., Hirt, H., & Zurek, L. (2009). Horizontal transfer of the tetracycline resistance gene tetM mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microbial Ecology, 58(3), 509-518. https://doi.org/10.1007/s00248-009-9533-9. EDN: https://elibrary.ru/qynlsu
- Aldred, K. J., Kerns, R. J., & Osheroff, N. (2014). Mechanism of quinolone action and resistance. Biochemistry, 53(10), 1565-1574. https://doi.org/10.1021/bi5000564
- Alduina, R., Gambino, D., Presentato, A., Gentile, A., Sucato, A., Savoca, D., Filippello, S., Visconti, G., Caracappa, G., Vicari, D., & Arculeo, M. (2020). Is Caretta Caretta a Carrier of Antibiotic Resistance in the Mediterranean Sea? Antibiotics (Basel, Switzerland), 9(3). https://doi.org/10.3390/antibiotics9030116. EDN: https://elibrary.ru/ldlkjc
- Anacarso, I., Iseppi, R., Sabia, C., Messi, P., Condò, C., Bondi, M., & de Niederhäusern, S. (2016). Conjugation-Mediated Transfer of Antibiotic-Resistance Plasmids Between Enterobacteriaceae in the Digestive Tract of Blaberus craniifer (Blattodea: Blaberidae). Journal of Medical Entomology, 53(3), 591-597. https://doi.org/10.1093/jme/tjw005
- Andersson, D. I. (2003). Persistence of antibiotic resistant bacteria. Current Opinion in Microbiology, 6(5), 452-456. https://doi.org/10.1016/j.mib.2003.09.001
- Andersson, D. I., & Hughes, D. (2010). Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Reviews. Microbiology, 8(4), 260-271. https://doi.org/10.1038/nrmicro2319
- Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews. Microbiology, 12(7), 465-478. https://doi.org/10.1038/nrmicro3270
- Andersson, D. I., & Hughes, D. (2011). Persistence of antibiotic resistance in bacterial populations. FEMS Microbiology Reviews, 35(5), 901-911. https://doi.org/10.1111/j.1574-6976.2011.00289.x
- Andersson, D. I., & Levin, B. R. (1999). The biological cost of antibiotic resistance. Current Opinion in Microbiology, 2(5), 489-493. https://doi.org/10.1016/s1369-5274(99)00005-3
- Antibiotic resistance threats in the United States, 2013. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (дата обращения: 17.03.24).
- Antimicrobial resistance. World Health Organization. URL: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (дата обращения: 17.03.24).
- Baquero, F., Alvarez-Ortega, C., & Martinez, J. L. (2009). Ecology and evolution of antibiotic resistance. Environmental microbiology reports, 1(6), 469-476. https://doi.org/10.1111/j.1758-2229.2009.00053.x
- Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Bürgmann, H., Sørum, H., Norström, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., & Martinez, J. L. (2015). Tackling antibiotic resistance: the environmental framework. Nature reviews. Microbiology, 13(5), 310-317. https://doi.org/10.1038/nrmicro3439
- Björkman, J., & Andersson, D. I. (2000). The cost of antibiotic resistance from a bacterial perspective. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 3(4), 237-245. https://doi.org/10.1054/drup.2000.0147
- Björkman, J., Hughes, D., & Andersson, D. I. (1998). Virulence of antibiotic-resistant Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 3949-3953. https://doi.org/10.1073/pnas.95.7.3949
- Björkman, J., Samuelsson, P., Andersson, D. I., & Hughes, D. (1999). Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium. Molecular microbiology, 31(1), 53-58. https://doi.org/10.1046/j.1365-2958.1999.01142.x
- Boss, L., Labudda, Ł., Węgrzyn, G., Hayes, F., & Kędzierska, B. (2013). The axe-txe complex of Enterococcus faecium presents a multilayered mode of toxin-antitoxin gene expression regulation. PloS one, 8(9). https://doi.org/10.1371/journal.pone.0073569
- Bush, K. (2013). Proliferation and significance of clinically relevant β-lactamases. Annals of the New York Academy of Sciences, 1277, 84-90. https://doi.org/10.1111/nyas.12023
- Cabello, F. C., Godfrey, H. P., Buschmann, A. H., & Dölz, H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet. Infectious diseases, 16(7). https://doi.org/10.1016/S1473-3099(16)00100-6
- Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., & Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104(6), 901-912. https://doi.org/10.1016/s0092-8674(01)00286-0. EDN: https://elibrary.ru/lzjgvr
- Chen, X. H., Koumoutsi, A., Scholz, R., & Borriss, R. (2009). More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Journal of Molecular Microbiology and Biotechnology, 16(1-2), 14-24. https://doi.org/10.1159/000142891
- Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrobial Agents and Chemotherapy, 47(12), 3675-3681. https://doi.org/10.1128/AAC.47.12.3675-3681.2003. EDN: https://elibrary.ru/lvmgoz
- Dantas, G., Sommer, M. O., Oluwasegun, R. D., & Church, G. M. (2008). Bacteria subsisting on antibiotics. Science, 320(5872), 100-103. https://doi.org/10.1126/science.1155157
- Davis, G. S., & Price, L. B. (2016). Recent Research Examining Links Among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections. Current Environmental Health Reports, 3(2), 128-135. https://doi.org/10.1007/s40572-016-0089-9. EDN: https://elibrary.ru/lhyozr
- D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. Science, 311(5759), 374-377. https://doi.org/10.1126/science.1120800
- Deris, J. B., Kim, M., Zhang, Z., Okano, H., Hermsen, R., Groisman, A., & Hwa, T. (2013). The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science, 342(6162). https://doi.org/10.1126/science.1237435
- Di Luca, M. C., Sørum, V., Starikova, I., Kloos, J., Hülter, N., Naseer, U., Johnsen, P. J. (2017). Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. Journal of Antimicrobial Chemotherapy, 72(1), 85-89. https://doi.org/10.1093/jac/dkw350
- Dimopoulou, A., Theologidis, I., Liebmann, B., Kalantidis, K., Vassilakos, N., & Skandalis, N. (2019). Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Scientific reports, 9(1), 19120. https://doi.org/10.1038/s41598-019-55645-2. EDN: https://elibrary.ru/kleyug
- Domínguez-Santos, R., Pérez-Cobas, A. E., Cuti, P., Pérez-Brocal, V., García-Ferris, C., Moya, A., Latorre, A., & Gil, R. (2021). Interkingdom Gut Microbiome and Resistome of the Cockroach Blattella germanica. mSystems, 6(3). https://doi.org/10.1128/mSystems.01213-20. EDN: https://elibrary.ru/hgwtvu
- Dönhöfer, A., Franckenberg, S., Wickles, S., Berninghausen, O., Beckmann, R., & Wilson, D. N. (2012). Structural basis for TetM-mediated tetracycline resistance. Proceedings of the National Academy of Sciences of the United States of America, 109(42), 16900-16905. https://doi.org/10.1073/pnas.1208037109
- D’Souza, A. W., Potter, R. F., Wallace, M., Shupe, A., Patel, S., Sun, X., Gul, D., Kwon, J. H., Andleeb, S., Burnham, C. D., & Dantas, G. (2019). Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nature communications, 10(1). https://doi.org/10.1038/s41467-019-12563-1. EDN: https://elibrary.ru/wiuwrb
- Du, D., Wang, Z., James, N. R., Voss, J. E., Klimont, E., Ohene-Agyei, T., Venter, H., Chiu, W., & Luisi, B. F. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature, 509(7501), 512-515. https://doi.org/10.1038/nature13205
- Durão, P., Trindade, S., Sousa, A., & Gordo, I. (2015). Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance. Molecular biology and evolution, 32(10), 2675-2680. https://doi.org/10.1093/molbev/msv143
- Enne, V. I., Bennett, P. M., Livermore, D. M., & Hall, L. M. (2004). Enhancement of host fitness by the sul2-coding plasmid p9123 in the absence of selective pressure. The Journal of antimicrobial chemotherapy, 53(6), 958-963. https://doi.org/10.1093/jac/dkh217. EDN: https://elibrary.ru/iqoguz
- Evans, D. R., Griffith, M. P., Sundermann, A. J., Shutt, K. A., Saul, M. I., Mustapha, M. M., Marsh, J. W., Cooper, V. S., Harrison, L. H., & Van Tyne, D. (2020). Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife, 9. https://doi.org/10.7554/eLife.53886. EDN: https://elibrary.ru/sjulsh
- Fajardo, A., Linares, J. F., & Martínez, J. L. (2009). Towards an ecological approach to antibiotics and antibiotic resistance genes. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 15, 14-16. https://doi.org/10.1111/j.1469-0691.2008.02688.x
- Faleye, A. C., Adegoke, A. A., Ramluckan, K., Fick, J., Bux, F., & Stenström, T. A. (2019). Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. The Science of the total environment, 678, 10-20. https://doi.org/10.1016/j.scitotenv.2019.04.410
- Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M., & Korzeniewska, E. (2020). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and environmental implications. European journal of pharmacology, 866. https://doi.org/10.1016/j.ejphar.2019.172813. EDN: https://elibrary.ru/hfhpaq
- Floss, H. G., & Yu, T. W. (2005). Rifamycin-mode of action, resistance, and biosynthesis. Chemical reviews, 105(2), 621-632. https://doi.org/10.1021/cr030112j. EDN: https://elibrary.ru/lzjigz
- Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O., & Dantas, G. (2012). The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science (New York, N.Y.), 337(6098), 1107-1111. https://doi.org/10.1126/science.1220761
- Franklin, A. M., Williams, C. F., & Watson, J. E. (2018). Assessment of Soil to Mitigate Antibiotics in the Environment Due to Release of Wastewater Treatment Plant Effluent. Journal of environmental quality, 47(6), 1347-1355. https://doi.org/10.2134/jeq2018.02.0076
- Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., Torii, K., Hasegawa, T., & Ohta, M. (2003). Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and environmental microbiology, 69(9), 5336-5342. https://doi.org/10.1128/AEM.69.9.5336-5342.2003. EDN: https://elibrary.ru/xoolzh
- Gardete, S., & Tomasz, A. (2014). Mechanisms of vancomycin resistance in Staphylococcus aureus. The Journal of clinical investigation, 124(7), 2836-2840. https://doi.org/10.1172/JCI68834
- Hall, A. R., Iles, J. C., & MacLean, R. C. (2011). The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics, 187(3), 817-822. https://doi.org/10.1534/genetics.110.124628. EDN: https://elibrary.ru/okrbed
- Hansen, T. A., Joshi, T., Larsen, A. R., Andersen, P. S., Harms, K., Mollerup, S., Willerslev, E., Fuursted, K., Nielsen, L. P., & Hansen, A. J. (2016). Vancomycin gene selection in the microbiome of urban Rattus norvegicus from hospital environment. Evolution, medicine, and public health, 2016(1), 219-226. https://doi.org/10.1093/emph/eow021
- Hatosy, S. M., & Martiny, A. C. (2015). The ocean as a global reservoir of antibiotic resistance genes. Applied and environmental microbiology, 81(21), 7593-7599. https://doi.org/10.1128/AEM.00736-15
- Hayes, F. (2003). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science (New York, N.Y.), 301(5639), 1496-1499. https://doi.org/10.1126/science.1088157. EDN: https://elibrary.ru/mbiiyb
- Hayes, F., & Van Melderen, L. (2011). Toxins-antitoxins: diversity, evolution and function. Critical reviews in biochemistry and molecular biology, 46(5), 386-408. https://doi.org/10.3109/10409238.2011.600437. EDN: https://elibrary.ru/phtfml
- He, Y., Jin, L., Sun, F., Hu, Q., & Chen, L. (2016). Antibiotic and heavy-metal resistance of Vibrio parahaemolyticus isolated from fresh shrimps in Shanghai fish markets, China. Environmental science and pollution research international, 23(15), 15033-15040. https://doi.org/10.1007/s11356-016-6614-4. EDN: https://elibrary.ru/nxrurq
- Hellweger, F. L. (2013). Escherichia coli adapts to tetracycline resistance plasmid (pBR322) by mutating endogenous potassium transport: in silico hypothesis testing. FEMS microbiology ecology, 83(3), 622-631. https://doi.org/10.1111/1574-6941.12019
- Hobbs, E. C., Yin, X., Paul, B. J., Astarita, J. L., & Storz, G. (2012). Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 109(41), 16696-16701. https://doi.org/10.1073/pnas.1210093109
- Hooper, D. C. (2002). Fluoroquinolone resistance among Gram-positive cocci. The Lancet. Infectious diseases, 2(9), 530-538. https://doi.org/10.1016/s1473-3099(02)00369-9
- Howden, B. P., Davies, J. K., Johnson, P. D., Stinear, T. P., & Grayson, M. L. (2010). Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clinical microbiology reviews, 23(1), 99-139. https://doi.org/10.1128/CMR.00042-09. EDN: https://elibrary.ru/lsbgte
- Howden, B. P., McEvoy, C. R., Allen, D. L., Chua, K., Gao, W., Harrison, P. F., Bell, J., Coombs, G., Bennett-Wood, V., Porter, J. L., Robins-Browne, R., Davies, J. K., Seemann, T., & Stinear, T. P. (2011). Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS pathogens, 7(11), e1002359. https://doi.org/10.1371/journal.ppat.1002359
- Howden, B. P., Stinear, T. P., Allen, D. L., Johnson, P. D., Ward, P. B., & Davies, J. K. (2008). Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrobial agents and chemotherapy, 52(10), 3755-3762. https://doi.org/10.1128/AAC.01613-07. EDN: https://elibrary.ru/mmfyfv
- Hu, H., Johani, K., Gosbell, I. B., Jacombs, A. S., Almatroudi, A., Whiteley, G. S., Deva, A. K., Jensen, S., & Vickery, K. (2015). Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. The Journal of hospital infection, 91(1), 35-44. https://doi.org/10.1016/j.jhin.2015.05.016
- Hurdle, J. G., O’Neill, A. J., Mody, L., Chopra, I., & Bradley, S. F. (2005). In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. The Journal of antimicrobial chemotherapy, 56(6), 1166-1168. https://doi.org/10.1093/jac/dki387. EDN: https://elibrary.ru/iqqvkn
- Imamovic, L., & Sommer, M. O. (2013). Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Science translational medicine, 5(204), 204ra132. https://doi.org/10.1126/scitranslmed.3006609
- Investigation Summary: Factors Potentially Contributing to the Contamination of Romaine Lettuce Implicated in the Fall 2018 Multi-State Outbreak of E. coli O157:H7. US Food and Drug Administration. URL: https://www.fda.gov/food/outbreaks-foodborne-illness/investigation-summary-factors-potentially-contributing-contamination-romaine-lettuce-implicated-fall (дата обращения: 17.03.24).
- Jacobsen, L., Wilcks, A., Hammer, K., Huys, G., Gevers, D., & Andersen, S. R. (2007). Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiology Ecology, 59(1), 158-166. https://doi.org/10.1111/j.1574-6941.2006.00212.x
- Jana, S., & Deb, J. K. (2006). Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology, 70(2), 140-150. https://doi.org/10.1007/s00253-005-0279-0. EDN: https://elibrary.ru/ppjmly
- Jara, D., Bello-Toledo, H., Domínguez, M., Cigarroa, C., Fernández, P., Vergara, L., Quezada-Aguiluz, M., Opazo-Capurro, A., Lima, C. A., & González-Rocha, G. (2020). Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-60035-0. EDN: https://elibrary.ru/urdkvm
- John, J. F., Jr, & Rice, L. B. (2000). The microbial genetics of antibiotic cycling. Infection Control and Hospital Epidemiology. https://doi.org/10.1086/503170
- Johnson, J. R., Kuskowski, M. A., Smith, K., O’Bryan, T. T., & Tatini, S. (2005). Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. The Journal of Infectious Diseases, 191(7), 1040-1049. https://doi.org/10.1086/428451
- Kaur, S. (2000). Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World Journal of Microbiology and Biotechnology, 16, 781-793. https://doi.org/10.1023/A. EDN: https://elibrary.ru/ltdqnh
- Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202-1211. https://doi.org/10.1021/es011055j
- Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H., & Hiramatsu, K. (2003). Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Molecular microbiology, 49(3), 807-821. https://doi.org/10.1046/j.1365-2958.2003.03599.x. EDN: https://elibrary.ru/etphvv
- Leclercq, R. (2002). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 34(4), 482-492. https://doi.org/10.1086/324626
- Levin, B. R., Lipsitch, M., Perrot, V., Schrag, S., Antia, R., Simonsen, L., Walker, N. M., & Stewart, F. M. (1997). The population genetics of antibiotic resistance. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 24. https://doi.org/10.1093/clinids/24.supplement_1.s9
- Levin, B. R., Perrot, V., & Walker, N. (2000). Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics, 154(3), 985-997. https://doi.org/10.1093/genetics/154.3.985
- Li, W., Atkinson, G. C., Thakor, N. S., Allas, U., Lu, C. C., Chan, K. Y., Tenson, T., Schulten, K., Wilson, K. S., Hauryliuk, V., & Frank, J. (2013). Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nature communications, 4. https://doi.org/10.1038/ncomms2470. EDN: https://elibrary.ru/rqjnef
- Luangtongkum, T., Shen, Z., Seng, V. W., Sahin, O., Jeon, B., Liu, P., & Zhang, Q. (2012). Impaired fitness and transmission of macrolide-resistant Campylobacter jejuni in its natural host. Antimicrobial agents and chemotherapy, 56(3), 1300-1308. https://doi.org/10.1128/AAC.05516-11
- Maeusli, M., Lee, B., Miller, S., Reyna, Z., Lu, P., Yan, J., Ulhaq, A., Skandalis, N., Spellberg, B., & Luna, B. (2020). Horizontal Gene Transfer of Antibiotic Resistance from Acinetobacter baylyi to Escherichia coli on Lettuce and Subsequent Antibiotic Resistance Transmission to the Gut Microbiome. mSphere, 5(3). https://doi.org/10.1128/mSphere.00329-20. EDN: https://elibrary.ru/hbtnzq
- Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules (Basel, Switzerland), 23(4). https://doi.org/10.3390/molecules23040795
- Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clinical microbiology reviews, 24(4), 718-733. https://doi.org/10.1128/CMR.00002-11
- Martínez, J. L., & Baquero, F. (2014). Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences, 119(2), 68-77. https://doi.org/10.3109/03009734.2014.901444
- Martinez, J. L., & Baquero, F. (2000). Mutation frequencies and antibiotic resistance. Antimicrobial Agents and Chemotherapy, 44(7), 1771-1777. https://doi.org/10.1128/AAC.44.7.1771-1777.2000
- Martínez, J. L., Coque, T. M., & Baquero, F. (2015). Prioritizing risks of antibiotic resistance genes in all metagenomes. Nature Reviews. Microbiology, 13(6). https://doi.org/10.1038/nrmicro3399-c2
- Martinez, J. L., Fajardo, A., Garmendia, L., Hernandez, A., Linares, J. F., Martínez-Solano, L., & Sánchez, M. B. (2009). A global view of antibiotic resistance. FEMS Microbiology Reviews, 33(1), 44-65. https://doi.org/10.1111/j.1574-6976.2008.00142.x
- Martínez-Martínez, L., Pascual, A., & Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet, 351(9105), 797-799. https://doi.org/10.1016/S0140-6736(97)07322-4. EDN: https://elibrary.ru/crwdjl
- Mehainaoui, A., Menasria, T., Benouagueni, S., Benhadj, M., Lalaoui, R., & Gacemi-Kirane, D. (2021). Rapid screening and characterization of bacteria associated with hospital cockroaches (Blattella germanica L.) using MALDI-TOF mass spectrometry. Journal of Applied Microbiology, 130(3), 960-970. https://doi.org/10.1111/jam.14803. EDN: https://elibrary.ru/ncpmuf
- Melnyk, A. H., Wong, A., & Kassen, R. (2015). The fitness costs of antibiotic resistance mutations. Evolutionary Applications, 8(3), 273-283. https://doi.org/10.1111/eva.12196
- Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-Infective Therapy, 12(10), 1221-1236. https://doi.org/10.1586/14787210.2014.956092
- Morosini, M. I., García-Castillo, M., Coque, T. M., Valverde, A., Novais, A., Loza, E., Baquero, F., & Cantón, R. (2006). Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrobial Agents and Chemotherapy, 50(8), 2695-2699. https://doi.org/10.1128/AAC.00155-06
- Nadimpalli, M., Delarocque-Astagneau, E., Love, D. C., Price, L. B., Huynh, B. T., Collard, J. M., Lay, K. S., Borand, L., Ndir, A., Walsh, T. R., Guillemot, D., & BIRDY Study Group. (2018). Combating Global Antibiotic Resistance: Emerging One Health Concerns in Lower- and Middle-Income Countries. Clinical Infectious Diseases, 66(6), 963-969. https://doi.org/10.1093/cid/cix879
- Neyra, R. C., Frisancho, J. A., Rinsky, J. L., Resnick, C., Carroll, K. C., Rule, A. M., Ross, T., You, Y., Price, L. B., & Silbergeld, E. K. (2014). Multidrug-resistant and methicillin-resistant Staphylococcus aureus (MRSA) in hog slaughter and processing plant workers and their community in North Carolina (USA). Environmental Health Perspectives, 122(5), 471-477. https://doi.org/10.1289/ehp.1306741. EDN: https://elibrary.ru/jgtkpt
- Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews, 67(4), 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003. EDN: https://elibrary.ru/meopop
- Nilsson, A. I., Zorzet, A., Kanth, A., Dahlström, S., Berg, O. G., & Andersson, D. I. (2006). Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proceedings of the National Academy of Sciences, 103(18), 6976-6981. https://doi.org/10.1073/pnas.0602171103
- Olivares, J., Álvarez-Ortega, C., & Martinez, J. L. (2014). Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 58(7), 3904-3913. https://doi.org/10.1128/AAC.00121-14
- Olivares, J., Alvarez-Ortega, C., Linares, J. F., Rojo, F., Köhler, T., & Martínez, J. L. (2012). Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environmental Microbiology, 14(8), 1968-1981. https://doi.org/10.1111/j.1462-2920.2012.02727.x
- Oteo, J., Mencía, A., Bautista, V., Pastor, N., Lara, N., González-González, F., García-Peña, F. J., & Campos, J. (2018). Colonization with Enterobacteriaceae-Producing ESBLs, AmpCs, and OXA-48 in Wild Avian Species, Spain 2015-2016. Microbial Drug Resistance, 24(7), 932-938. https://doi.org/10.1089/mdr.2018.0004
- Pärnänen, K. M. M., Narciso-da-Rocha, C., Kneis, D., Berendonk, T. U., Cacace, D., Do, T. T., Elpers, C., Fatta-Kassinos, D., Henriques, I., Jaeger, T., Karkman, A., Martinez, J. L., Michael, S. G., Michael-Kordatou, I., O’Sullivan, K., Rodriguez-Mozaz, S., Schwartz, T., Sheng, H., Sørum, H., Stedtfeld, R. D., & Manaia, C. M. (2019). Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science advances, 5(3). https://doi.org/10.1126/sciadv.aau9124
- Poole, K. (2005). Efflux-mediated antimicrobial resistance. The Journal of antimicrobial chemotherapy, 56(1), 20-51. https://doi.org/10.1093/jac/dki171. EDN: https://elibrary.ru/mgrdnd
- PubMed. URL: https://pubmed.ncbi.nlm.nih.gov/ (дата обращения: 01.11.2024)
- Quinn, J. P., Dudek, E. J., DiVincenzo, C. A., Lucks, D. A., & Lerner, S. A. (1986). Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. The Journal of infectious diseases, 154(2), 289-294. https://doi.org/10.1093/infdis/154.2.289
- Rabbia, V., Bello-Toledo, H., Jiménez, S., Quezada, M., Domínguez, M., Vergara, L., Gómez-Fuentes, C., Calisto-Ulloa, N., González-Acuña, D., López, J., et al. (2016). Antibiotic Resistance in Escherichia Coli Strains Isolated from Antarctic Bird Feces, Water from inside a Wastewater Treatment Plant, and Seawater Samples Collected in the Antarctic Treaty Area. Polar Sci., 10, 123-131. https://doi.org/10.1016/j.polar.2016.04.002
- Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 13(6), 151-171. https://doi.org/10.1016/j.drup.2010.08.003. EDN: https://elibrary.ru/ompgnt
- Reynolds, P. E. (1989). Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology, 8(11), 943-950. https://doi.org/10.1007/BF01967563. EDN: https://elibrary.ru/kpmkem
- Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C., & San Millán, Á. (2021). Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nature reviews. Microbiology, 19(6), 347-359. https://doi.org/10.1038/s41579-020-00497-1. EDN: https://elibrary.ru/ornmhm
- Rodríguez-Martínez, J. M., Cano, M. E., Velasco, C., Martínez-Martínez, L., & Pascual, A. (2011). Plasmid-mediated quinolone resistance: an update. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy, 17(2), 149-182. https://doi.org/10.1007/s10156-010-0120-2
- Rosvoll, T. C., Pedersen, T., Sletvold, H., Johnsen, P. J., Sollid, J. E., Simonsen, G. S., Jensen, L. B., Nielsen, K. M., & Sundsfjord, A. (2010). PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin-antitoxin systems. FEMS immunology and medical microbiology, 58(2), 254-268. https://doi.org/10.1111/j.1574-695X.2009.00633.x
- Ryu, S. H., Park, S. G., Choi, S. M., Hwang, Y. O., Ham, H. J., Kim, S. U., Lee, Y. K., Kim, M. S., Park, G. Y., Kim, K. S., & Chae, Y. Z. (2012). Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. International journal of food microbiology, 152(1-2), 14-18. https://doi.org/10.1016/j.ijfoodmicro.2011.10.003
- San Millan, A., Toll-Riera, M., Qi, Q., & MacLean, R. C. (2015). Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nature communications, 6. https://doi.org/10.1038/ncomms7845
- Sandegren, L., & Andersson, D. I. (2009). Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature reviews. Microbiology, 7(8), 578-588. https://doi.org/10.1038/nrmicro2174. EDN: https://elibrary.ru/xwrner
- Santos, L., & Ramos, F. (2018). Antimicrobial resistance in aquaculture: Current knowledge and alternatives to tackle the problem. International journal of antimicrobial agents, 52(2), 135-143. https://doi.org/10.1016/j.ijantimicag.2018.03.010
- Sjölund, M., Bonnedahl, J., Hernandez, J., Bengtsson, S., Cederbrant, G., Pinhassi, J., Kahlmeter, G., Olsen, B. (2008). Dissemination of multidrug-resistant bacteria into the Arctic. Emerging infectious diseases, 14(1), 70-72. https://doi.org/10.3201/eid1401.070704. EDN: https://elibrary.ru/mssgjr
- Skurnik, D., Roux, D., Cattoir, V., Danilchanka, O., Lu, X., Yoder-Himes, D. R., Han, K., Guillard, T., Jiang, D., Gaultier, C., Guerin, F., Aschard, H., Leclercq, R., Mekalanos, J. J., Lory, S., & Pier, G. B. (2013). Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proceedings of the National Academy of Sciences of the United States of America, 110(51), 20747-20752. https://doi.org/10.1073/pnas.1221552110
- Smani, Y., López-Rojas, R., Domínguez-Herrera, J., Docobo-Pérez, F., Martí, S., Vila, J., & Pachón, J. (2012). In vitro and in vivo reduced fitness and virulence in ciprofloxacin-resistant Acinetobacter baumannii. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(1). https://doi.org/10.1111/j.1469-0691.2011.03695.x
- State of the Art on the Contribution of Water to Antimicrobial Resistance. Joint Research Centre. Retrieved March 17, 2024, from https://publications.jrc.ec.europa.eu/repository/handle/JRC114775
- Stępień-Pyśniak, D., Hauschild, T., Dec, M., Marek, A., & Urban-Chmiel, R. (2019). Clonal Structure and Antibiotic Resistance of Enterococcus spp. from Wild Birds in Poland. Microbial drug resistance (Larchmont, N.Y.), 25(8), 1227-1237. https://doi.org/10.1089/mdr.2018.0461
- Sun, Z., Jiao, X., Peng, Q., Jiang, F., Huang, Y., Zhang, J., & Yao, F. (2013). Antibiotic resistance in Pseudomonas aeruginosa is associated with decreased fitness. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 31(2-3), 347-354. https://doi.org/10.1159/000343372
- Sundqvist, M., Geli, P., Andersson, D. I., Sjölund-Karlsson, M., Runehagen, A., Cars, H., Abelson-Storby, K., Cars, O., & Kahlmeter, G. (2010). Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. The Journal of antimicrobial chemotherapy, 65(2), 350-360. https://doi.org/10.1093/jac/dkp387
- Tacão, M., Moura, A., Correia, A., & Henriques, I. (2014). Co-resistance to different classes of antibiotics among ESBL-producers from aquatic systems. Water research, 48, 100-107. https://doi.org/10.1016/j.watres.2013.09.021
- The State of World Fisheries and Aquaculture 2018 (SOFIA). Food and Agriculture Organization of the United Nations. Retrieved March 17, 2024, from https://www.fao.org/documents/card/en/c/I9540EN
- Toprak, E., Veres, A., Michel, J. B., Chait, R., Hartl, D. L., & Kishony, R. (2011). Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature genetics, 44(1), 101-105. https://doi.org/10.1038/ng.1034. EDN: https://elibrary.ru/xzivbm
- Trindade, S., Sousa, A., Xavier, K. B., Dionisio, F., Ferreira, M. G., & Gordo, I. (2009). Positive epistasis drives the acquisition of multidrug resistance. PLoS genetics, 5(7). https://doi.org/10.1371/journal.pgen.1000578. EDN: https://elibrary.ru/xydixq
- Trotta, A., Cirilli, M., Marinaro, M., Bosak, S., Diakoudi, G., Ciccarelli, S., Paci, S., Buonavoglia, D., & Corrente, M. (2021). Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Marine pollution bulletin, 164. https://doi.org/10.1016/j.marpolbul.2021.112015. EDN: https://elibrary.ru/yglnwj
- Vaidya, V. K. (2011). Horizontal Transfer of Antimicrobial Resistance by Extended-Spectrum β Lactamase-Producing Enterobacteriaceae. Journal of laboratory physicians, 3(1), 37-42. https://doi.org/10.4103/0974-2727.78563
- Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T: a peer-reviewed journal for formulary management, 40(4), 277-283. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521
- Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., de Schaetzen, M. A., Van Huffel, X., Imberechts, H., Dierick, K., Daube, G., Saegerman, C., De Block, J., Dewulf, J., & Herman, L. (2013). Antimicrobial resistance in the food chain: a review. International journal of environmental research and public health, 10(7), 2643-2669. https://doi.org/10.3390/ijerph10072643. EDN: https://elibrary.ru/rmfvfj
- Watanabe, Y., Cui, L., Katayama, Y., Kozue, K., & Hiramatsu, K. (2011). Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. Journal of clinical microbiology, 49(7), 2680-2684. https://doi.org/10.1128/JCM.02144-10
- Watts, J. E. M., Schreier, H. J., Lanska, L., & Hale, M. S. (2017). The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Marine drugs, 15(6). https://doi.org/10.3390/md15060158
- Weingarten, R. A., Johnson, R. C., Conlan, S., Ramsburg, A. M., Dekker, J. P., Lau, A. F., Khil, P., Odom, R. T., Deming, C., Park, M., Thomas, P. J., NISC Comparative Sequencing Program, Henderson, D. K., Palmore, T. N., Segre, J. A., & Frank, K. M. (2018). Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. mBio, 9(1). https://doi.org/10.1128/mBio.02011-17. EDN: https://elibrary.ru/vfgktv
- Weisblum, B. (1995). Erythromycin resistance by ribosome modification. Antimicrobial agents and chemotherapy, 39(3), 577-585. https://doi.org/10.1128/AAC.39.3.577
- Zeballos-Gross, D., Rojas-Sereno, Z., Salgado-Caxito, M., Poeta, P., Torres, C., & Benavides, J. A. (2021). The Role of Gulls as Reservoirs of Antibiotic Resistance in Aquatic Environments: A Scoping Review. Frontiers in microbiology, 12. https://doi.org/10.3389/fmicb.2021.703886. EDN: https://elibrary.ru/fovwcb
- Zhang, Y., Zhang, C., Parker, D. B., Snow, D. D., Zhou, Z., & Li, X. (2013). Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons. The Science of the total environment, 463-464, 631-638. https://doi.org/10.1016/j.scitotenv.2013.06.016
Supplementary files
