Genes of woody plants involved in the formation of drought and salt tolerance
- Authors: Tretyakova A.V.1, Malov V.O.1, Krylov P.A.1
-
Affiliations:
- Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
- Issue: Vol 17, No 3 (2025)
- Pages: 614-633
- Section: Scientific Reviews and Reports
- Published: 31.08.2025
- URL: https://journal-vniispk.ru/2658-6649/article/view/316329
- DOI: https://doi.org/10.12731/2658-6649-2025-17-3-1118
- EDN: https://elibrary.ru/ZFIWHO
- ID: 316329
Cite item
Full Text
Abstract
Background. The study of the molecular mechanisms regulating gene expression in response to various types of stress in woody plants, particularly drought and high soil salinity, is becoming a necessary condition for breeding or creating new resistant cultivars, forms, and hybrids with specific economically valuable traits. Currently, the extent and depth of studying the genes involved in drought and high soil salinity tolerance in woody plants is extremely low compared to agricultural crops, which significantly complicates and slows down the breeding process that should be based on achievements in molecular biology and genetics.
Purpose. To summarize, describe, and select potential genes involved in the formation of drought and salt tolerance in a range of woody plants used in agroforestry and protective afforestation, growing in areas with arid and semi-arid climates.
Materials and methods. To achieve the research objectives, more than 250 scientific sources were reviewed and a search in open gene databases was conducted to identify genes and their homologues databases using the BLAST program associated with drought and salt tolerance in woody plants used in agroforestry and protective afforestation.
Results. This study summarizes and describes 28 genes associated with drought tolerance and 14 genes associated with salt tolerance in the genera Quercus and Populus, and the families Fabaceae, Rosaceae, and Oleaceae.
Conclusion. Thus, as a result of the analysis of genes associated with drought and salt tolerance in woody plants, key targets have been identified that can serve as a basis for molecular selection, followed by the identification of potential markers and their possible association with economically valuable traits.
About the authors
Anna V. Tretyakova
Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
Author for correspondence.
Email: tretaykova@vfanc.ru
ORCID iD: 0009-0001-4478-4711
SPIN-code: 8498-4535
ResearcherId: JAN-9574-2023
Research Engineer at the Laboratory of Genomic and Postgenomic Technologies
Russian Federation, 97, Universitetsky pr., Volgograd, 400062, Russian Federation
Vsevolod O. Malov
Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
Email: malov-v@vfanc.ru
ORCID iD: 0000-0003-2766-0124
SPIN-code: 7408-8285
ResearcherId: HHR-9077-2022
Research Engineer at the Laboratory of Genomic and Postgenomic Technologies
Russian Federation, 97, Universitetsky pr., Volgograd, 400062, Russian Federation
Pavel A. Krylov
Federal Scientific Center of Agroecology, Complex Melioration, and Protective Afforestation RAS
Email: krylov-p@vfanc.ru
ORCID iD: 0000-0001-9587-5886
SPIN-code: 9652-7459
Scopus Author ID: 57213164834
ResearcherId: V-6884-2017
Cand. Sc. (Biology), Leading Researcher, Head of the Laboratory of Genomic and Postgenomic Technologies
Russian Federation, 97, Universitetsky pr., Volgograd, 400062, Russian Federation
References
- Belyaev, A. I., Krylov, P. A., Pugacheva, A. M., & Derevshchikova, L. V. (2023). Analysis of genomes of tree and shrub plants used in agroforestry reclamation in southern regions of Russia. Proceedings of the Nizhnevolzhsky Agro-University Complex: Science and Higher Professional Education, 70(2), 30-42 (Беляев, А. И., Крылов, П. А., Пугачева, А. М., & Деревщикова, Л. В. (2023). Анализ наличия геномов древесно-кустарниковых растений, используемых в агролесомелиорации южных регионов России. Известия Нижневолжского агроуниверситетского комплекса: Наука и высшее профессиональное образование, 70(2), 30-42). https://doi.org/10.32786/2071-9485-2023-02-03. EDN: https://elibrary.ru/ttkjca
- Kryuchkov, S. N., & Matiss, G. Ya. (2014). Forest planting in arid conditions. Volgograd: VNIALMI. 300 p. (Крючков, С. Н., & Матисс, Г. Я. (2014). Лесоразведение в засушливых условиях. Волгоград: ВНИАЛМИ. 300 с.) ISBN: 5-900761-29-0. EDN: https://elibrary.ru/ysbxrb
- Kulik, K. N., Belyaev, A. I., & Pugacheva, A. M. (2023). Role of protective forest planting in combating drought and desertification of agrolandscapes. Arid Ecosystems, 94(1), 4-14 (Кулик, К. Н., Беляев, А. И., & Пугачёва, А. М. (2023). Роль защитного лесоразведения в борьбе с засухой и опустыниванием агроландшафтов. Аридные экосистемы, 94(1), 4-14). https://doi.org/10.24412/1993-3916-2023-1-4-14. EDN: https://elibrary.ru/cszxwa
- Arend, M., Schnitzler, J. P., Ehlting, B., Hänsch, R., Lange, T., Rennenberg, H., Himmelbach, A., Grill, E., & Fromm, J. (2009). Expression of the Arabidopsis mutant ABI1 gene alters abscisic acid sensitivity, stomatal development, and growth morphology in gray poplars. Plant Physiol., 151(4), 2110-2119. https://doi.org/10.1104/pp.109.144956
- Ariga, H., Katori, T., Yoshihara, R., Hase, Y., Nozawa, S., Narumi, I., Iuchi, S., Kobayashi, M., Tezuka, K., Sakata, Y., Hayashi, T., & Taji, T. (2013). Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance. Plant Signal Behav., 8(7), e24779. https://doi.org/10.4161/psb.24779
- Asif, M. A., Zafar, Y., Iqbal, J., et al. (2011). Enhanced Expression of AtNHX1, in Transgenic Groundnut (Arachis hypogaea L.) Improves Salt and Drought Tolerence. Mol Biotechnol., 49, 250-256. https://doi.org/10.1007/s12033-011-9399-1. EDN: https://elibrary.ru/ozmfnn
- Ben Rejeb, K., Benzarti, M., Debez, A., Bailly, C., Savouré, A., & Abdelly, C. (2015). NADPH oxidase-dependent H2O2 production is required for salt-induced antioxidant defense in Arabidopsis thaliana. J Plant Physiol, 174, 5-15. https://doi.org/10.1016/j.jplph.2014.08.022
- Chen, K., Li, G. J., Bressan, R. A., Song, C. P., Zhu, J. K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol., 62(1), 25-54. https://doi.org/10.1111/jipb.12899. EDN: https://elibrary.ru/yxwwtp
- Cheol Park, H., Cha, J. Y., & Yun, D. J. (2013). Roles of YUCCAs in auxin biosynthesis and drought stress responses in plants. Plant Signal Behav., 8(6), e24495. https://doi.org/10.4161/psb.24495
- Chu, M., Chen, P., Meng, S., Xu, P., & Lan, W. (2021). The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1. J Integr Plant Biol., 63(3), 528-542. https://doi.org/10.1111/jipb.13008. EDN: https://elibrary.ru/voblyu
- Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212(4), 475-486. https://doi.org/10.1007/s004250000458. EDN: https://elibrary.ru/atgnqz
- De Angeli, A., Monachello, D., Ephritikhine, G., Frachisse, J. M., Thomine, S., Gambale, F., & Barbier-Brygoo, H. (2006). The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature, 442(7105), 939-942. https://doi.org/10.1038/nature05013
- Distéfano, A. M., Valiñas, M. A., Scuffi, D., Lamattina, L., Ten Have, A., García-Mata, C., & Laxalt, A. M. (2015). Phospholipase D δ knock-out mutants are tolerant to severe drought stress. Plant Signal Behav., 10(11), e1089371. https://doi.org/10.1080/15592324.2015.1089371
- Eldridge, D. J., Ding, J., Dorrough, J., et al. (2024). Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands. Nat. Plants, 10, 760-770. https://doi.org/10.1038/s41477-024-01670-7. EDN: https://elibrary.ru/vpfehm
- Elliott, K. J., & Swank, W. T. (1994). Impacts of drought on tree mortality and growth in a mixed hardwood forest. Journal of vegetation science, 5(2), 229-236. https://doi.org/10.2307/3236155
- Gao, S., Gao, J., Zhu, X., Song, Y., Li, Z., Ren, G., Zhou, X., & Kuai, B. (2016). ABF2, ABF3, and ABF4 Promote ABA-Mediated Chlorophyll Degradation and Leaf Senescence by Transcriptional Activation of Chlorophyll Catabolic Genes and Senescence-Associated Genes in Arabidopsis. Mol Plant, 9(9), 1272-1285. https://doi.org/10.1016/j.molp.2016.06.006
- Martins, G. de F., Antonio, L. de O., Freire, C. F., Bakke, I. A., & França, D. F. (2023). Gas exchange and initial growth of Mimosa tenuiflora (Willd.) Poir. plants under salinity conditions. Concilium, 23(2), 555-569. https://doi.org/10.53660/clm-792-23a47
- Gy, I., Gasciolli, V., Lauressergues, D., Morel, J. B., Gombert, J., Proux, F., Proux, C., Vaucheret, H., & Mallory, A. C. (2007). Arabidopsis FIERY1, XRN2, and XRN3 are endogenous RNA silencing suppressors. Plant Cell, 19(11), 3451-3461. https://doi.org/10.1105/tpc.107.055319
- Han, Y., Zhang, X., Wang, W., Wang, Y., & Ming, F. (2013). The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One, 8(11), e73541. https://doi.org/10.1371/journal.pone.0073541
- Hao, G. P., Zhang, X. H., Wang, Y. Q., Wu, Z. Y., & Huang, C. L. (2009). Nucleotide variation in the NCED3 region of Arabidopsis thaliana and its association study with abscisic acid content under drought stress. J Integr Plant Biol, 51(2), 175-183. https://doi.org/10.1111/j.1744-7909.2008.00786.x
- Hasanuzzaman, M., Araújo, S., & Gill, S. S. (2020). The plant family fabaceae. https://doi.org/10.1007/978-981-15-4752-2
- Hechenberger, M., Schwappach, B., Fischer, W. N., Frommer, W. B., Jentsch, T. J., & Steinmeyer, K. (1996). A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem, 271(52), 33632-33638. https://doi.org/10.1074/jbc.271.52.33632. EDN: https://elibrary.ru/yciqrm
- Hsieh, T. H., Li, C. W., Su, R. C., Cheng, C. P., Sanjaya, Tsai, Y. C., & Chan, M. T. (2010). A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 231(6), 1459-1473. https://doi.org/10.1007/s00425-010-1147-4. EDN: https://elibrary.ru/nzitmr
- Jossier, M., Kroniewicz, L., Dalmas, F., Le Thiec, D., Ephritikhine, G., Thomine, S., Barbier-Brygoo, H., Vavasseur, A., Filleur, S., & Leonhardt, N. (2010). The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J, 64(4), 563-576. https://doi.org/10.1111/j.1365-313x.2010.04352.x. EDN: https://elibrary.ru/pmabmj
- Kang, K. K., & Cho, Y. G. (2022). Genetic Research and Plant Breeding. Genes (Basel), 14(1), 51. https://doi.org/10.3390/genes14010051. EDN: https://elibrary.ru/flfiim
- Lee, K., & Seo, P. J. (2015). Coordination of seed dormancy and germination processes by MYB96. Plant Signal Behav, 10(9), e1056423. https://doi.org/10.1104/pp.15.00162
- Legnaioli, T., Cuevas, J., & Mas, P. (2009). TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J, 28(23), 3745-3757. https://doi.org/10.1038/emboj.2009.297
- Lei, G., Shen, M., Li, Z. G., Zhang, B., Duan, K. X., Wang, N., Cao, Y. R., Zhang, W. K., Ma, B., Ling, H. Q., Chen, S. Y., & Zhang, J. S. (2011). EIN2 regulates salt stress response and interacts with a MA3 domain-containing protein ECIP1 in Arabidopsis. Plant Cell Environ, 34(10), 1678-1692. https://doi.org/10.1111/j.1365-3040.2011.02363.x
- Liu, J., Elmore, J. M., Fuglsang, A. T., Palmgren, M. G., Staskawicz, B. J., & Coaker, G. (2009). RIN4 functions with plasma membrane H±ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol, 7(6), e1000139. https://doi.org/10.1371/journal.pbio.1000139
- Liu, X. M., Nguyen, X. C., Kim, K. E., Han, H. J., Yoo, J., Lee, K., Kim, M. C., Yun, D. J., & Chung, W. S. (2013). Phosphorylation of the zinc finger transcriptional regulator ZAT6 by MPK6 regulates Arabidopsis seed germination under salt and osmotic stress. Biochem Biophys Res Commun, 430(3), 1054-1059. https://doi.org/10.1016/j.bbrc.2012.12.039
- Liu, Z., Guo, C., Wu, R., Hu, Y., Zhou, Y., Wang, J., Yu, X., Zhang, Y., Bawa, G., & Sun, X. (2022). FLS2-RBOHD-PIF4 Module Regulates Plant Response to Drought and Salt Stress. Int J Mol Sci, 23(3), 1080. https://doi.org/10.3390/ijms23031080. EDN: https://elibrary.ru/rzcxnp
- Luo, X., Li, C., He, X., Zhang, X., & Zhu, L. (2020). ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep, 39(2), 181-194. https://doi.org/10.1007/s00299-019-02480-4. EDN: https://elibrary.ru/fpjfhg
- Mane, S. P., Vasquez-Robinet, C., Sioson, A. A., Heath, L. S., & Grene, R. (2007). Early PLDalpha-mediated events in response to progressive drought stress in Arabidopsis: a transcriptome analysis. J Exp Bot, 58(2), 241-252. https://doi.org/10.1093/jxb/erl262
- Mittal, A., Gampala, S. S., Ritchie, G. L., Payton, P., Burke, J. J., & Rock, C. D. (2014). Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J, 12(5), 578-589. https://doi.org/10.1111/pbi.12162
- Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P. M., & Murata, Y. (2013). SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J, 73(1), 91-104. https://doi.org/10.1111/tpj.12014
- Mizoguchi, M., Umezawa, T., Nakashima, K., Kidokoro, S., Takasaki, H., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2010). Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol, 51(5), 842-847. https://doi.org/10.1093/pcp/pcq041. EDN: https://elibrary.ru/nyxkdb
- Moazzam-Jazi, M., Ghasemi, S., Seyedi, S. M., & Niknam, V. (2018). COP1 plays a prominent role in drought stress tolerance in Arabidopsis and Pea. Plant Physiol Biochem, 130, 678-691. https://doi.org/10.1016/j.plaphy.2018.08.015. EDN: https://elibrary.ru/yixptv
- Moreno-Calles, A., Casas, A., Blancas, J., et al. (2010). Agroforestry systems and biodiversity conservation in arid zones: the case of the Tehuacán Valley, Central México. Agroforest Syst, 80, 315-331. https://doi.org/10.1007/s10457-010-9349-0. EDN: https://elibrary.ru/gknatu
- Pitzschke, A., Datta, S., & Persak, H. (2014). Salt stress in Arabidopsis: lipid transfer protein AZI1 and its control by mitogen-activated protein kinase MPK3. Mol Plant, 7(4), 722-738. https://doi.org/10.1093/mp/sst157
- Rajashekar, C. B., Zhou, H. E., Zhang, Y., Li, W., & Wang, X. (2006). Suppression of phospholipase Dalpha1 induces freezing tolerance in Arabidopsis: response of cold-responsive genes and osmolyte accumulation. J Plant Physiol, 163(9), 916-926. https://doi.org/10.1016/j.jplph.2005.08.006
- Rehman, S., & Mahmood, T. (2015). Functional role of DREB and ERF transcription factors: regulating stress-responsive network in plants. Acta Physiol Plant, 37, 178. https://doi.org/10.1007/s11738-015-1929-1. EDN: https://elibrary.ru/frqxzj
- Riboni, M., Galbiati, M., Tonelli, C., & Conti, L. (2013). Gigantea enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of constans. Plant Physiol., 162(3), 1706-1719. https://doi.org/10.1104/pp.113.217729
- Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol., 136(1), 2734-2746. https://doi.org/10.1104/pp.104.046599. EDN: https://elibrary.ru/xnyjqt
- Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell, 18(5), 1292-1309. https://doi.org/10.1105/tpc.105.035881
- Schöning, J. C., Streitner, C., Meyer, I. M., Gao, Y., & Staiger, D. (2008). Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis. Nucleic Acids Res., 36(22), 6977-6987. https://doi.org/10.1093/nar/gkn847
- Shkolnik-Inbar, D., & Bar-Zvi, D. (2010). ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell, 22(11), 3560-3573. https://doi.org/10.1105/tpc.110.074641. EDN: https://elibrary.ru/nyxgux
- Shu, K., Chen, Q., Wu, Y., Liu, R., Zhang, H., Wang, S., Tang, S., Yang, W., & Xie, Q. (2016). Abscisic acid-insensitive 4 negatively regulates flowering through directly promoting Arabidopsis flowering locus C transcription. J Exp Bot., 67(1), 195-205. https://doi.org/10.1093/jxb/erv459
- Singh, K., & Chandra, A. (2021). DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia, 76, 3043-3055. https://doi.org/10.1007/s11756-021-00840-8. EDN: https://elibrary.ru/igqkgv
- Sobola, O. O., Amadi, D. C., & Jamala, G. Y. (2015). The role of agroforestry in environmental sustainability. IOSR Journal of Agriculture and Veterinary Science, 8(5), 20-25. https://doi.org/10.9790/2380-08512025
- Sottosanto, J. B., Saranga, Y., & Blumwald, E. (2007). Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biology, 7, 18. https://doi.org/10.1186/1471-2229-7-18. EDN: https://elibrary.ru/tjqilz
- Szechyńska-Hebda, M., Czarnocka, W., Hebda, M., Bernacki, M. J., & Karpiński, S. (2016). PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties. Plant Cell Reports, 35(3), 527-539. https://doi.org/10.1007/s00299-016-1955-5. EDN: https://elibrary.ru/nrsvca
- Tikhomirova, T. S., Krutovsky, K. V., & Shestibratov, K. A. (2022). Molecular Traits for Adaptation to Drought and Salt Stress in Birch, Oak and Poplar Species. Forests, 14(1), 7. https://doi.org/10.3390/f14010007. EDN: https://elibrary.ru/uukoib
- Trejo-Téllez, L. I. (2023). Salinity Stress Tolerance in Plants. Plants, 12, 3520. https://doi.org/10.3390/plants12203520. EDN: https://elibrary.ru/xmkys
- Trivedi, D. K., Gill, S. S., & Tuteja, N. (2016). Abscisic Acid (ABA): Biosynthesis, Regulation, and Role in Abiotic Stress Tolerance. In Abiotic Stress Response in Plants (pp. 315-326). https://doi.org/10.1002/9783527694570.ch15
- von der Fecht-Bartenbach, J., Bogner, M., Dynowski, M., & Ludewig, U. (2010). CLC-b-mediated NO-3/H+ exchange across the tonoplast of Arabidopsis vacuoles. Plant Cell Physiology, 51(6), 960-968. https://doi.org/10.1093/pcp/pcq062. EDN: https://elibrary.ru/nyymvf
- Wang, P., Du, Y., Zhao, X., Miao, Y., & Song, C. P. (2013). The MPK6-ERF6-ROS-responsive cis-acting Element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiology, 161(3), 1392-1408. https://doi.org/10.1104/pp.112.210724
- Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R., & Luo, Z. (2012). Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 20(2), 109-121. https://doi.org/10.1139/a2012-004. EDN: https://elibrary.ru/poxqip
- Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., & Wu, Y. (2013). The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. Journal of Experimental Botany, 64(2), 675-684. https://doi.org/10.1093/jxb/ers361
- Wilson, P. B., Estavillo, G. M., Field, K. J., Pornsiriwong, W., Carroll, A. J., Howell, K. A., Woo, N. S., Lake, J. A., Smith, S. M., Harvey Millar, A., von Caemmerer, S., & Pogson, B. J. (2009). The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J., 58(2), 299-317. https://doi.org/10.1111/j.1365-313x.2008.03780.x
- Xu, D. B., Chen, M., Ma, Y. N., Xu, Z. S., Li, L. C., Chen, Y. F., & Ma, Y. Z. (2015). A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis. PLoS One, 10(1), e0116385. https://doi.org/10.1371/journal.pone.0116385
- Yáñez, M., Cáceres, S., Orellana, S., Bastías, A., Verdugo, I., Ruiz-Lara, S., & Casaretto, J. A. (2009). An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep., 28(10), 1497-1507. https://doi.org/10.1007/s00299-009-0749-4. EDN: https://elibrary.ru/jaczur
- Yang, D. H., Kwak, K. J., Kim, M. K., Park, S. J., Yang, K. Y., & Kang, H. (2014). Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci., 214, 106-112. https://doi.org/10.1016/j.plantsci.2013.10.006
- Yuan, Lu., F., J., Zeng., Xiaoda, Li., & Bo, Zhang. (2021). Physiological changes of three woody plants exposed to progressive salt stress. Photosynthetica, 59(1), 171-184. https://doi.org/10.32615/PS.2021.007. EDN: https://elibrary.ru/pnbgdy
- Yue, Y., Zhang, M., Zhang, J., Duan, L., & Li, Z. (2011). Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) results in enhanced drought tolerance. Plant Sci., 181(4), 405-411. https://doi.org/10.1016/j.plantsci.2011.06.010
Supplementary files
