Purification and applying Di Linh bentonite, Lam Dong, Vietnam in improving the properties of coral sand soil in semi‑arid and saline islands

Cover Page

Cite item

Full Text

Abstract

Background. Vietnam's extensive coastline and numerous islands result in a large expanse of coral sand. This type of sand possesses distinct mechanical properties, including coarseness, low nutrient content, poor moisture and water retention, and high salinity. Globally, various methods are employed to improve sandy soils by modifying their physical, chemical, and nutritional properties to create favorable conditions for plant growth.

Purpose. The objective of this article is to evaluate the impact of bentonite on the surface structure of coral sand, with a focus on altering key factors such as density, bulk density, porosity, electrical conductivity (EC), cation exchange capacity (CEC), and the field moisture-holding capacity of sand particles.

Materials and methods. Bentonite powder used in this study was produced by Hiep Phu Lam Dong Joint Stock Company from the Di Linh bentonite mine in Lam Dong, Vietnam.

In this study, We use physicochemical analysis methods such as: X-ray diffraction (XRD) method, Fourier-transform infrared (FT-IR) spectroscopy, Scanning Electron Microscope (SEM) and some methods for determining the physicochemical properties of soils.

Results. In this study, raw bentonite from Di Linh, Lam Dong, supplied by Hiep Phu Lam Dong Joint Stock Company, was purified using the hydrocyclone method. The purified bentonite contains 69.0% montmorillonite and exhibits a cation exchange capacity (CEC) of 54.98 meq/100g, making it an excellent material for ameliorating the limitations of coral sand. Research findings demonstrated that the addition of bentonite in varying proportions significantly enhanced the physical and chemical properties of coral sand. Key improvements included the increases in soil density (2.5–2.6 g/cm³) and bulk density (1.25 g/cm³), leading to a soil porosity of 50.02%. Furthermore, properties such as moisture retention and water-holding capacity were markedly improved due to the intrinsic characteristics of bentonite. At a supplementation rate of 3%, the cation exchange capacity (CEC) increased by over 83%, while electrical conductivity (EC) reached 470 µS/cm.

Conclusion. These enhancements are promising for improving the nutrient retention and exchange capacity of coral sand, thereby fostering better plant growth.

About the authors

Cong Tinh Nguyen

Joint Vietnam - Russia Tropical Science and Technology Research Center

Author for correspondence.
Email: tinhdk2k48@gmail.com
ORCID iD: 0009-0004-6535-6101

Researcher, Master, Research Assistant, Department of Biotechnology

 

Viet Nam, 63, Nguyen Van Huyen Str., Nghia Do, Cau Giay, Hanoi, Vietnam

Duy Nhan Vu

Joint Vietnam - Russia Tropical Science and Technology Research Center

Email: vuduynhanvn@gmail.com

Senior Researcher, Doctor of Science, Head of Laboratory

 

Viet Nam, 63, Nguyen Van Huyen Str., Nghia Do, Cau Giay, Hanoi, Vietnam

Thi Hoai Thu Vo

Joint Vietnam - Russia Tropical Science and Technology Research Center

Email: thuvo3081@gmail.com

Researcher, Doctor of Science, Deputy Head of Laboratory

 

Russian Federation, 63, Nguyen Van Huyen Str., Nghia Do, Cau Giay, Hanoi, Vietnam

Thi Thu Trang Dinh

Joint Vietnam - Russia Tropical Science and Technology Research Center

Email: trangdt1806@gmail.com

Researcher, Master of Science, Research Assistant

 

Viet Nam, 63, Nguyen Van Huyen Str., Nghia Do, Cau Giay, Hanoi, Vietnam

Thi Hue Le

Joint Vietnam - Russia Tropical Science and Technology Research Center

Email: huelebiotech85@gmail.com

Researcher, Master of Science, Research Assistant

 

Viet Nam, 63, Nguyen Van Huyen Str., Nghia Do, Cau Giay, Hanoi, Vietnam

Minh Tien Vu

Graduate University of Science and Technology

Email: minhtienvu0@gmail.com

Biotechnology Engineer

 

Viet Nam, 18, Hoang Quoc Viet Str., Cau Giay, Hanoi, Vietnam

Vinh Truong Do

Vietnam Academy of Science and Technology

Email: dovinhtruong@ib.ac.vn
ORCID iD: 0009-0009-4976-5876

Researcher, Master of Science, Research Assistant, Institute of Chemistry and Material

 

Russian Federation, 18, Hoang Quoc Viet, Nghia Do Ward, Hanoi, Vietnam

Van Tu Nguyen

Institute of Chemistry and Material

Email: nguyenvantu882008@yahoo.com

Researcher, Master of Science, Research Assistant

 

Viet Nam, 17, Hoang Sam, Cau Giay, Hanoi, Vietnam

References

  1. Tuan, T. A. (2014). Research on landscape characteristics of coral islands in the Truong Sa archipelago. Vietnam Journal of Marine Science and Technology, 14(3), 238–245.
  2. Yet, N. H., & Thanh, D. N. (2008). Biological resources and ecosystems in the waters of the Hoang Sa and Truong Sa archipelagos. In: Natural Science and Technology Publishing. VietNam.
  3. Duong, P. X. (2008). Some distribution features of temperature and salinity in the surface layer of the East Sea in summer and winter. Institute of Oceanography, 707–716.
  4. Garbowski, T., Bar Michalczyk, D., Charazińska, S., Grabowska Polanowska, B., Kowalczyk, A., & Lochyński, P. (2023). An overview of natural soil amendments in agriculture. Soil and Tillage Research, 225, 105462. https://doi.org/10.1016/j.still.2022.105462. EDN: https://elibrary.ru/UCHGKY
  5. Narjary, B., Aggarwal, P., Singh, A., Chakraborty, D., & Singh, R. (2012). Water availability in different soils in relation to hydrogel application. Geoderma, 187, 94–101. https://doi.org/10.1016/j.geoderma.2012.03.002. EDN: https://elibrary.ru/XZULGD
  6. Andrenelli, M. C., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari, F. P., & Vignozzi, N. (2016). Field application of pelletized biochar: Short term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management, 163, 190–196.
  7. Mi, J. Z., Liu, J. H., Xu, S. T., Zhao, B. P., Yang, M. H., & Zhou, L. (2015). Effects of sandy soil amendment on soil moisture and growth status of millet with rainfed sandy soil in a semi arid region. Advanced Materials Research, 1092, 1234–1242.
  8. Yu, J., Shainberg, I., Yan, Y. L., Shi, J. G., Levy, G. J., & Mamedov, A. I. (2011). Superabsorbents and semiarid soil properties affecting water absorption. Soil Science Society of America Journal, 75(6), 2305–2313. https://doi.org/10.2136/sssaj2010.0397. EDN: https://elibrary.ru/XYYXXE
  9. Nesse, W. D. (2012). Introduction to mineralogy. Oxford University Press.
  10. Hassan, A. Z. A., & Mahmoud, A. W. M. (2013). The combined effect of bentonite and natural zeolite on sandy soil properties and productivity of some crops. Topclass Journal of Agricultural Research, 1(3), 22–28.
  11. Semalulu, O., Magunda, M., & Mubiru, D. N. (2015). Amelioration of sandy soils in drought stricken areas through use of Ca bentonite. Uganda Journal of Agricultural Sciences, 16(2), 195–205.
  12. Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., Ma, B., & Liu, J. (2017). Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi arid region. Field Crops Research, 212, 107–114. https://doi.org/10.1016/j.fcr.2017.07.009. EDN: https://elibrary.ru/YGZCJN
  13. Karbout, N., Moussa, M., Gasmi, I., & Bousnina, H. (2015). Effect of clay amendment on physical and chemical characteristics of sandy soil in arid areas: The case of ground south eastern Tunisian. Applied Science Reports, 11, 43–48.
  14. Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., Ma, B., & Liu, J. (2021). Changes in soil biochemical properties following application of bentonite as a soil amendment. European Journal of Soil Biology, 102, 103251. https://doi.org/10.1016/j.ejsobi.2020.103251. EDN: https://elibrary.ru/FALKRF
  15. Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., & Liu, J. (2020). Effect of bentonite as a soil amendment on field water holding capacity, and millet photosynthesis and grain quality. Scientific Reports, 10(1), 18282.
  16. Xu, C. Y., Hosseini Bai, S., Hao, Y., Rachaputi, R. C., Wang, H., Xu, Z., & Wallace, H. (2015). Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environmental Science and Pollution Research, 22, 6112–6125. https://doi.org/10.1007/s11356-014-3820-9. EDN: https://elibrary.ru/VGDEMD
  17. Czaban, J., Czyz, E., Siebielec, G., & Niedzwiecki, J. (2014). Long lasting effects of bentonite on properties of a sandy soil deprived of the humus layer. International Agrophysics, 28(3). https://doi.org/10.2478/intag-2014-0018
  18. th Botany: Practicals. Water holding capacity of garden soil and roadside soil (2020). Retrieved from https://www.brainkart.com/article/Water-holding-capacity-of-garden-soil-and-roadside-soil_38350/
  19. Darvishi, Z., & Morsali, A. (2011). Synthesis and characterization of Nano bentonite by sonochemical method. Ultrasonics Sonochemistry, 18(1), 238–242.
  20. Sun, Z., Yu, J., Zheng, S. L., Bai, C. H., Dou, Z. L., Kong, W. A., & Shi, J. G. (2010). Effect of ion type and concentration on water retention capacity of bentonite used in geosynthetic clay liner. Journal of the Chinese Ceramic Society, 38, 1826–1831.
  21. De Castro, M. L. F. A., Abad, M. L. B., Sumalinog, D. A. G., Abarca, R. R. M., Paoprasert, P., & de Luna, M. D. G. (2018). Adsorption of methylene blue dye and Cu(II) ions on EDTA modified bentonite: Isotherm, kinetic and thermodynamic studies. Sustainable Environment Research, 28(5), 197–205.
  22. Soda, W., Noble, A. D., Suzuki, S., Simmons, R., Sindhusen, L. A., & Bhuthorndharaj, S. (2006). Co composting of acid waste bentonites and their effects on soil properties and crop biomass. Journal of Environmental Quality, 35(6), 2293–2301.
  23. Yangwei, P., & Yan, S. (2012). Resources characteristics and market situation of bentonites at home and abroad. Journal of Metal Mine, 105, 95–99.
  24. Lerma, T. A., Chamorro, A. F., & Palencia, M. (2024). Effect of soil conditioners based on geomimetic materials on plant growth in degraded soils: Poly(acrylic acid)/bentonite. Journal of Environmental Chemical Engineering, 12(5), 113567. https://doi.org/10.1016/j.jece.2024.113567. EDN: https://elibrary.ru/GPWPMK
  25. Zhang, L., Mi, J., Zhao, B., Cui, X., Hu, K., McLaughlin, N. B., & Liu, J. (2024). Soil amendment combining bentonite and maize straw improves soil quality cropped to oat in a semi arid region. Agronomy, 14(5), 1012. https://doi.org/10.3390/agronomy14051012. EDN: https://elibrary.ru/KICUZU
  26. Noble, A. D., Ruaysoongnern, S., de Vries, F. P., Hartmann, C., & Webb, M. J. (2004). Enhancing the agronomic productivity of degraded soils in North east Thailand through clay based interventions. Water in Agriculture, 116.
  27. Suzuki, S., Noble, A. D., Ruaysoongnern, S., & Chinabut, N. (2007). Improvement in water holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Research and Management, 21(1), 37–49.
  28. Saleth, R. M., Inocencio, A., Noble, A., & Ruaysoongnern, S. (2009). Economic gains of improving soil fertility and water holding capacity with clay application: The impact of soil remediation research in Northeast Thailand. Journal of Development Effectiveness, 1(3), 336–352.
  29. Noble, A. D., Gillman, G. P., Nath, S., & Srivastava, R. J. (2001). Changes in the surface charge characteristics of degraded soils in the wet tropics through the addition of beneficiated bentonite. Soil Research, 39(5), 991–1001.
  30. Châu, N. H., Hà, N. V., Tựa, T. V., Hà, Đ. Q., Hảo, C. T., & Thùy, N. T. (2020). Effects of bentonite on cation exchange and moisture retaining capacities in the sandy soil of Ninh Thuan province for asparagus cultivation. Journal of Analytical Chemistry, Physics and Biology, 25(1), 81–85.
  31. Thinh, N. T., Nhan, D. T., Vinh, H., Bao, P. V., Cuong, H. H., Hoa, H. T. T., Chon, N. Q., Truc, D. T. T., Mann, S., & Bell, R. (2021). Integrated management of soil, water and nutrition for crop production on sandy soils of the South Central Coast Vietnam. Vietnam Journal of Agricultural Science and Technology, 127(6), 81–88.
  32. Kiem, T. M., Huong, G. T., Huyen, T. T., & Huong, P. T. M. (2020). Study on creating any chemicals on bentonite facilities by characterization method for solid dragging of waste from the Lao Cai gold phospho production process. Science Technology, Hanoi University of Industry, 10, 230–233.
  33. Gong, Z., Liao, L., Lv, G., & Wang, X. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294–300.
  34. Gama, A. J. A., Neves, G. A., Barros, P. L., Neto, A. T. P., & Alves, J. J. N. (2020). Hydrocyclone performance for bentonite clay purification. Chemical Engineering Research and Design, 161, 168–177. https://doi.org/10.1016/j.cherd.2020.07.005. EDN: https://elibrary.ru/FXFOHJ
  35. Christidis, G. E., Scott, P. W., & Dunham, A. C. (1997). Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece. Applied Clay Science, 12(4), 329–347.
  36. ASTM. (2003). Standard test method for methylene blue index of clay (ASTM C837 99).
  37. Wyoming Bentonite. Retrieved from https://main.wsgs.wyo.gov/mineral-resources/industrial-minerals/bentonite
  38. Hoang Minh, T., Kasbohm, J., Nguyen Thanh, L., Nga, P. T., Lai, L. T., Duong, N. T., & Ferreiro Mählmann, R. (2019). Use of TEM EDX for structural formula identification of clay minerals: A case study of Di Linh bentonite, Vietnam. Journal of Applied Crystallography, 52(1), 133–147. https://doi.org/10.1107/S1600576718018162. EDN: https://elibrary.ru/MFCXRV
  39. Yariv, S. (1996). Thermo IR spectroscopy analysis of the interactions between organic pollutants and clay minerals. Thermochimica Acta, 274, 1–35. EDN: https://elibrary.ru/ALMVHX
  40. Banik, N., Jahan, S. A., Mostofa, S., Kabir, H., Sharmin, N., Rahman, M., & Ahmed, S. (2015). Synthesis and characterization of organoclay modified with cetylpyridinium chloride. Bangladesh Journal of Scientific and Industrial Research, 50(1), 65–70.
  41. Alabarse, F. G., Conceição, R. V., Balzaretti, N. M., Schenato, F., & Xavier, A. M. (2011). In situ FTIR analyses of bentonite under high pressure. Applied Clay Science, 51(1–2), 202–208.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».