The role of agroforestry systems in the production of Triticum aestivum (regional level)

封面

如何引用文章

全文:

详细

Background. Despite the proven effect of forest reclamation systems on increasing the yield of individual crops at specific research sites, the question of the reliability of the participation of the forest cover factor in yield, among many other influencing factors, remains open. The paper presents for the first time the results of research on the influence of a complex of factors: the forest cover of research facilities (districts of the Volgograd region) in the form of areas of protective forest plantations, soil fertility (humus) and precipitation on the yield of winter wheat, the main grain crop of arid territories.

Materials and methods. The optimal indicator of the forest cover of agricultural land, adopted in the study, is 1.5%. A methodology for calculating the forest cover of territories belonging to other categories has been applied. Long-term time series (50 years) have been constructed and analyzed for the objects of research winter wheat yields and precipitation. The methodology of statistical analysis includes multiple regression, analysis of the coefficients of paired, partial and multiple correlations, as well as their reliability and significance.

Results. Data for the period from 1973 to 2022 confirmed the zonal differences in the yield of the crop under study, which proves the constant influence of soil and climatic conditions on agricultural production in changing climate conditions. A reliable correlation of the average degree between the yield and the areas of protective forest plantations was revealed and it amounted to 0.51, It was confirmed by t-criterion of 1.86 at α 0.10. A strong connection was found between yield and soil fertility (humus), yield and rainfall – 0.85; 0.86. T- criterion amounted to 5.1 at α 0.01 (0.99). The impact of the complex of factors on yield indicators was calculated by multiple regression. The coefficient of determination R2 = 0.824 obtained in the regression model indicates that 82.4% of variations in yield are explained by the studied factors. The remaining percentages are considered to be unaccounted factors. The obtained p-values of the studied factors as soil fertility (humus) of 0.18 and precipitation of 0.40 are statistically important at a significance level of α 0.10.

Conclusion. This study indicates that there is a significant contribution of grain to the productivity of agricultural land, represented by the yield of fall wheat. There is a need to create artificial plantations on agricultural lands and bring their areas to optimal forest cover indicators in order the agricultural industry to function more effectively.

作者简介

Anna Pugacheva

Federal Scientific Center of Agroecology, Complex Melioration and Protective Afforestation Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pugachevaa@vfanc.ru
ORCID iD: 0000-0003-0852-8056
SPIN 代码: 6857-8236
Scopus 作者 ID: 57194047579
Researcher ID: 5482-2017

PhD Sci. Agr., Academic Secretary

 

俄罗斯联邦, 97, Universitetskiy Ave., 400062 Volgograd, Russian Federation

参考

  1. Sarychev, A. N., Mikhal’kov, D. E., Vdovenko, A. V., & Vorob’yeva, O. M. (2021). Agroecological conditions for winter wheat cultivation under the protection of forest belts. Agrarian Bulletin of the Urals, 1(204), 11–20. https://doi.org/10.32417/1997-4868-2021-204-01-11-20. EDN: https://elibrary.ru/IUBBMJ
  2. AllRussia Research Institute of Hydrometeorological Information — World Data Center (VNIIIGMIMDC). Climate data archive [Electronic resource]. Obninsk, 1997. URL: http://meteo.ru/it/178-aisori (accessed: 12.02.2024).
  3. Vasil’ev, M. E. (1978). Protective afforestation in the dry steppe of Altai Krai and Northern Kazakhstan [Author’s abstract of Doctoral Dissertation in Agricultural Sciences] (37 pp.). Leningrad. EDN: https://elibrary.ru/QGJBED
  4. Vasil’ev, Yu. I., Sarychev, A. N., & Sergeeva, I. S. (2009). Formation of bioproductive potential and its impact on yield in the zone of forest belt influence. Agrarian Bulletin of the Urals, 4(58), 89–92. EDN: https://elibrary.ru/PMXDYH
  5. Vasil’ev, Yu. I., Voloshenkova, T. V., & Ovechko, N. N. (2013). Methodology for forecasting yield variation of grain crops in agroforest landscapes in relation to climatic instability. Reports of the Russian Academy of Agricultural Sciences, 4, 54–57. EDN: https://elibrary.ru/QCNHRJ
  6. Vasil’ev, Yu. I., Turko, S. Yu., & Sarychev, A. N. (2014). Modeling agronomic influence of forest belts in their systems with different parameters. In Ways to improve the efficiency of irrigated agriculture: Collection of scientific papers, 56(2), 5–14. EDN: https://elibrary.ru/SZNVWF
  7. Vasil’ev, Yu. I., & Turko, S. Yu. (2015). On the issue of winter wheat yield increase in forestameliorated areas and associated risks. Ways to improve the efficiency of irrigated agriculture, 3(59), 68–73. EDN: https://elibrary.ru/UIYPKR
  8. Vasil’ev, Yu. I., Turko, S. Yu., & Ovechko, N. N. (2016). Mathematical modeling of longterm yield variation of winter wheat in open and forested areas. Russian Agricultural Science, 1, 38–41. EDN: https://elibrary.ru/VMBFZZ
  9. Voloshenkova, T. V. (2018). Resourcesaving technologies and soil resistance to deflation in agroforest landscapes of southern Russia. Science News in AgroIndustrial Complex, 1(10), 28–32. https://doi.org/10.25930/2218-855x-1-10-4350. EDN: https://elibrary.ru/GFXDGR
  10. Vorob’yov, A. V. (1992). Land resources. In: Soilecological problems in steppe agriculture (proposals for rational use of soil resources in Volgograd region) (pp. 16–22). Pushchino: Institute of Soil Science and Photosynthesis.
  11. Ivonin, V. M. (2023). Synergetics of agroforestry amelioration systems. Regional Geosystems, 47(1), 62–75. https://doi.org/10.52575/2712-7443-2023-47-1-62-75. EDN: https://elibrary.ru/OGKKIX
  12. Ivonin, V. M. (2024a). Regenerative agroforestry. Regional Geosystems, 48(1), 30–44. https://doi.org/10.52575/2712-7443-2024-48-1-30-44. EDN: https://elibrary.ru/TMQEUH
  13. Ivonin, V. M. (2024b). Theoretical concept of agroforestry systems. Irrigated Agriculture, 1(44), 59–64. https://doi.org/10.35809/2618-8279-2024-1-9. EDN: https://elibrary.ru/ILDRGH
  14. Kulik, K. N., & Pugacheva, A. M. (2016). Forest amelioration as a basis for creating sustainable agrolandscapes in insufficiently humidified conditions. Forestry Engineering Journal, 6(3/23), 29–40. EDN: https://elibrary.ru/WMUWWL
  15. Kulik, K. N., Belyaev, A. I., & Pugacheva, A. M. (2023). Role of protective afforestation in combating drought and desertification in agrolandscapes. Arid Ecosystems, 13(1), 1–10. https://doi.org/10.1134/S2079096123010079. EDN: https://elibrary.ru/OSGDIB
  16. Makar, S. V. (2012). Sustainability of forest potential development in Russian regions as an assessment of strategy implementation effectiveness. Regional Economics: Theory and Practice, 2, 9–19. EDN: https://elibrary.ru/ONWPJB
  17. Molchanov, A. A. (1966). Optimal forest cover (case study of Central Chernozem Region) (126 pp.). Moscow: Nauka.
  18. Nedikova, E. V., Chechin, D. I., & Krasnyanskaya, E. V. (2022). Improving forest amelioration design of arable lands. Land Management, Cadastre and Land Monitoring, 10, 637–642. https://doi.org/10.33920/sel-04-2210-02. EDN: https://elibrary.ru/RZQZTD
  19. Ovchinnikov, A. S., Balashova, N. N., & Ivanova, N. V. (2014). Strategy for integrated development of rural territories and effective functioning of the agroindustrial complex of Volgograd Oblast under WTO conditions. Economics of Agricultural and Processing Enterprises, 1, 16–20. EDN: https://elibrary.ru/RUNKZJ
  20. Logginov, B. I. (1961). Fundamentals of fieldprotective afforestation (353 pp.). Kyiv: UASKhN Publishing House.
  21. Sarychev, A. N., Mikhal’kov, D. E., Mishchenko, E. V., et al. (2023). Features of yield formation and grain quality indicators of winter wheat in agroforest landscape. Agrarian Russia, 10, 25–30. https://doi.org/10.30906/1999-5636-2023-10-25-30. EDN: https://elibrary.ru/GFMGJF
  22. Sergeeva, I. S., Vasil’ev, Yu. I., Ovechko, N. N., et al. (2010). Assessment of soilprotective influence of forest belts considering their age aspect under new land use conditions on arable land in the dry steppe of the Lower Volga region. Agrarian Bulletin of the Urals, 8(74), 64–66. EDN: https://elibrary.ru/MVLKXR
  23. Gordeev, A. V., & Romanenko, G. A. (Eds.). (2008). Problems of degradation and restoration of agricultural land productivity in Russia (68 pp.). Moscow: Rosinformagrotekh.
  24. Pugacheva, A. M. (2018). Agroforestry systems as a basis for agricultural development. Proceedings of the Lower Volga AgroUniversity Complex: Science and Higher Professional Education, 1(49), 227–237. https://doi.org/10.32786/2071-9485-2018-01-227-237. EDN: https://elibrary.ru/YZKGZV
  25. Rulev, A. S., & Pugacheva, A. M. (2019). Development of crop production at the regional level (case study of Volgograd Oblast). Studies of Economic Development of Russia, 30(5), 557–562. https://doi.org/10.1134/S1075700719050113. EDN: https://elibrary.ru/ZRSBHL
  26. Rulev, A. S., & Pugacheva, A. M. (2019a). Formation of a new agroforestry paradigm. Herald of the Russian Academy of Sciences, 89(10), 1044–1051. https://doi.org/10.31857/S0869-587389101044-1051. EDN: https://elibrary.ru/GPUZVY
  27. Ruleva, O. V. (2014). Model of the production process of crop cultivation in irrigated agroforestry landscapes. Proceedings of the Lower Volga AgroUniversity Complex: Science and Higher Professional Education, 3(35), 62–68. EDN: https://elibrary.ru/SPWSHT
  28. Rulev, A. S., & Ruleva, O. V. (2015). Geospatial paradigm in managing bioproductivity of agroforest landscapes. Scientific Life, 6, 68–77. EDN: https://elibrary.ru/VJOZNH
  29. Ruleva, O. V., Rulev, A. S., & Ovechko, N. N. (2015). Calculation of daily biomass increment of maize in irrigated agroforest landscapes. Proceedings of Orenburg State Agrarian University, 5(55), 53–57. EDN: https://elibrary.ru/UZBXUF
  30. Ruleva, O. V., & Ovechko, N. N. (2016). Patterns of crop development in rainfed and irrigated agroforest landscapes. Herald of Russian Agricultural Science, 4, 18–20. EDN: https://elibrary.ru/WEZWFV
  31. Ruleva, O. V., & Ovechko, N. N. (2018). Dynamics of wind speed in irrigated agroforest landscapes. Meteorology and Hydrology, 9, 97–103. EDN: https://elibrary.ru/XZITYL
  32. Sarychev, A. N., Kostin, M. V., & Pleskachev, Yu. N. (2021). Influence of protective forest plantations and soil tillage methods on agrophysical properties of chestnut soils and crop yields. Forestry Bulletin, 25(6), 63–70. https://doi.org/10.18698/2542-1468-2021-6-63-70. EDN: https://elibrary.ru/IZCHLI
  33. Ruleva, O. V., & Ovechko, N. N. (2016). Certificate of state registration of computer program No. 2016662346 Russian Federation. Determination of small sample size of oilseed crops in the zone of forest belt influence (No. 2016619724; filed 14.09.2016; published 08.11.2016). Federal State Budgetary Scientific Institution “Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences”. EDN: https://elibrary.ru/APFMKA
  34. Pugacheva, A. M., Belyaev, A. I., & Trubakova, K. Yu. (2023). Certificate of state registration of database No. 2023622960 Russian Federation. Zonal agroforestry system of dry steppes of Volgograd Oblast (No. 2023622402; filed 26.07.2023; published 28.08.2023). Federal State Budgetary Scientific Institution “Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences”. EDN: https://elibrary.ru/YGTUTX
  35. Ruleva, O. V., & Ovechko, N. N. (2016). Patent No. 2603903 C1 Russian Federation, IPC A01G 7/00, A01G 1/00. Method for calculating plant biomass in interbelt space (No. 2015139780/13; filed 18.09.2015; published 10.12.2016). Federal State Budgetary Scientific Institution “Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences” (FSC for Agroecology RAS). EDN: https://elibrary.ru/PLZREF
  36. Ruleva, O. V., & Ovechko, N. N. (2017). The role of forest belts in crop yield formation under irrigation. Ways to Improve the Efficiency of Irrigated Agriculture, 1(65), 128–134. EDN: https://elibrary.ru/YIYBFR
  37. Ruleva, O. V., & Ovechko, N. N. (2017). Bioproductivity of irrigated agroforest landscapes: models and forecasts (115 pp.). Volgograd: Federal Scientific Center for Agroecology, RAS. ISBN: 9785990984127. EDN: https://elibrary.ru/CKQIMN
  38. Ryabinina, N. O. (2011). Preservation of reference steppe ecosystems and landscapes in Volgograd Oblast. Bulletin of Volgograd State University, 3, 231–238. EDN: https://elibrary.ru/NWGBCF
  39. Sazhin, A. N., Kulik, K. N., & Vasil’ev, Yu. I. (2017). Weather and climate of Volgograd Oblast (2nd ed., revised and enlarged; 334 pp.). Volgograd: Federal Research Center for Agroecology, Russian Academy of Sciences. ISBN: 9785900761008. EDN: https://elibrary.ru/WNPTAJ
  40. Ruleva, O. V., & Ovechko, N. N. (2017). Certificate of state registration of computer program No. 2017663290 Russian Federation. Calculation of winter wheat photosynthetic potential over the growing season in a forested agroforest landscape (No. 2017660190; filed 10.10.2017; published 28.11.2017). Federal State Budgetary Scientific Institution “Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences”. EDN: https://elibrary.ru/WJCBHC
  41. Kulik, K. N., Barabanov, A. T., Zhdanov, Yu. M., et al. (2017). Strategy for the development of protective afforestation in Volgograd Oblast for the period up to 2025 (39 pp.). Volgograd: Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation, Russian Academy of Sciences. ISBN: 9785900761961. EDN: https://elibrary.ru/YJFHJZ
  42. Strategy for the development of protective afforestation in the Russian Federation for the period up to 2025 (34 pp.). Volgograd: AllRussia Research Institute of Agroforestry (VNIALMI), 2014.
  43. Ruleva, O. V., & Ovechko, N. N. (2018). Patent No. 2661829 C1 Russian Federation, IPC A01G 7/00, A01G 23/00. Method for assessing yield and productivity of irrigated crops in forestprotected landscapes (filed 18.01.2017; published 19.07.2018). Federal State Budgetary Scientific Institution “Federal Scientific Center for Agroecology, Integrated Land Reclamation and Protective Afforestation of the Russian Academy of Sciences” (FSC for Agroecology RAS). EDN: https://elibrary.ru/ZEJAHB
  44. Akbar, G., Ahmad, M., Rafique, S., et al. (1990). Effect of trees on the yield of wheat crop. Agroforestry Systems, 11, 1–10. https://doi.org/10.1007/BF00122808. EDN: https://elibrary.ru/XLMQIW
  45. Ameha, N., & Asfaw, Z. (2024). Orientation and root trench effects of Eucalyptus globulus boundary plantations on barley yield and soil physicochemical properties in the Gummer district, Central Highlands, Ethiopia. Agroforestry Systems, 98, 1461–1473. https://doi.org/10.1007/s10457-024-01015-5. EDN: https://elibrary.ru/YGWEVG
  46. Arkhipova, M. V. (2020). Forest cover changes in the center of East European Plain over the last 150 years. Contemporary Problems of Ecology, 13(7), 825–834. https://doi.org/10.1134/S1995425520070033. EDN: https://elibrary.ru/JJJJRH
  47. Chemura, A., Yalew, A. W., & Gornott, C. (2021). Quantifying agroforestry yield buffering potential under climate change in the smallholder maize farming systems of Ethiopia. Frontiers in Agronomy, 3, 609536. https://doi.org/10.3389/fagro.2021.609536. EDN: https://elibrary.ru/LRHRQF
  48. Eichhorn, M. P., Paris, P., Herzog, F., Incolli, L. D., Liagre, F., Mantzanas, K., et al. (2006). Silvoarable systems in Europe — past, present and future prospects. Agroforestry Systems, 67, 29–50. https://doi.org/10.1007/s10457-005-1111-7. EDN: https://elibrary.ru/MWIXGC
  49. García de Jalón, S., Graves, A., Palma, J. H. N., Williams, A., Upson, M., & Burgess, P. J. (2018). Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: a case study. Agroforestry Systems, 92, 1059–1073. https://doi.org/10.1007/s10457-017-0128-z. EDN: https://elibrary.ru/IBGMSS
  50. Ivezić, V., Yu, Y., & Werf, W. v. d. (2021). Crop yields in European agroforestry systems: a metaanalysis. Frontiers in Sustainable Food Systems. https://doi.org/10.3389/fsufs.2021.606631. EDN: https://elibrary.ru/PFSRCW
  51. Kanzler, M., Böhm, C., & Mirck, J., et al. (2019). Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforestry Systems, 93, 1821–1841. https://doi.org/10.1007/s10457-018-0289-4. EDN: https://elibrary.ru/ROXZGS
  52. Kachova, V., Hinkov, G., Popov, E., et al. (2018). Agroforestry in Bulgaria: history, presence status and prospects. Agroforestry Systems, 92, 655–665. https://doi.org/10.1007/s10457-016-0029-6. EDN: https://elibrary.ru/OPFEJL
  53. Krčmarova, J., & Jelecek, J. (2017). Czech traditional agroforestry: historic accounts and current status. Agroforestry Systems, 91, 1087–1100. https://doi.org/10.1007/s10457-016-9985-0. EDN: https://elibrary.ru/IRLOKX
  54. Nerlich, K., GraeffHönninger, S., & Claupein, W. (2013). Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agroforestry Systems, 87, 475–492. https://doi.org/10.1007/s10457-012-9560-2. EDN: https://elibrary.ru/KVVKBN
  55. Pugacheva, A. M. (2021). Effects exercised by artificial forest stands on the restoration of secondary virgin lands in agroforest landscapes of dry steppes. Biology Bulletin, 48, 199–206. https://doi.org/10.1134/S1062359021020096. EDN: https://elibrary.ru/TBJFMJ
  56. Pugacheva, A. M. (2023). Functionality of zonal agroforestry systems on agricultural land of dry territories. Forests, 14(12), 2364. https://doi.org/10.3390/f14122364. EDN: https://elibrary.ru/AVBZAQ
  57. Pretzschel, M., Bohme, G., & Krause, H. (1991). Effects of shelterbelts on crop yield. Feldwirtschaft, 32, 229–231.
  58. Tubalov, A. A. (2023). Spatial principles of territories selection for priority development of agroforestry complexes. Forests, 14, 1225. https://doi.org/10.3390/f14061225. EDN: https://elibrary.ru/EHLZWH
  59. Thiesmeier, A. (2024). Comparing the economic performance of poplarbased alley cropping systems with arable farming in Brandenburg under varying site conditions and policy scenarios. Agroforestry Systems, 98, 1507–1522. https://doi.org/10.1007/s10457-024-01021-7. EDN: https://elibrary.ru/SBRSBY
  60. Sheikh, M. I., & Khalique, A. (1982). Effect of tree belts on the yield of agricultural crops. Pakistan Journal of Forestry, 32, 21–23.
  61. Jiang, S., Xiong, K., & Xiao, J. (2022). Structure and stability of agroforestry ecosystems: insights into the improvement of service supply capacity of agroforestry ecosystems under the karst rocky desertification control. Forests, 13, 878. https://doi.org/10.3390/f13060878. EDN: https://elibrary.ru/WCQLEU
  62. Quinkenstein, A., Wollecke, J., Böhm, C., Grunewald, H., Freese, D., Schneider, B., et al. (2009). Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environmental Science & Policy, 12, 1112–1121. https://doi.org/10.1016/j.envsci.2009.08.008
  63. Fisher, J., Zerger, A., Gibbons, P., Stott, J., & Law, B. S. (2010). Tree decline and the future of Australian farmland biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 107, 19597–19602. https://doi.org/10.1073/pnas.1008476107
  64. Wolz, J. K., & DeLucia, E. H. (2018). Alley cropping: global patterns of species composition and function. Agriculture, Ecosystems & Environment, 252, 61–68. https://doi.org/10.1016/j.agee.2017.10.005
  65. Yukhnovskyi, V., Polishchuk, O., Lobchenko, G., et al. (2021). Aerodynamic properties of windbreaks of various designs formed by thinning in central Ukraine. Agroforestry Systems, 95, 855–865. https://doi.org/10.1007/s10457-020-00503-8. EDN: https://elibrary.ru/BAVVNE
  66. Federal State Statistics Service [Electronic resource]. URL: http://www.gks.ru (accessed: 15.02.2024).
  67. Rosstat [Electronic resource]. URL: https://rosstat.gov.ru/ (accessed: 05.03.2024).
  68. Unified State Register of Soil Resources of Russia [Electronic resource]. URL: https://egrpr.esoil.ru (accessed: 12.03.2024).
  69. Legal system “LegalAct” [Electronic resource]. URL: https://legalacts.ru (accessed: 18.03.2024).

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».