Risk factors of the severe course and fatal outcome in COVID-19
- Authors: Sсherbak S.G.1,2, Kamilova T.A.1, Golota A.S.1, Vologzhanin D.A.1,2
-
Affiliations:
- Saint Petersburg City Hospital No 40
- Saint-Petersburg State University
- Issue: Vol 4, No 1 (2022)
- Pages: 14-36
- Section: REVIEWS
- URL: https://journal-vniispk.ru/2658-6843/article/view/104997
- DOI: https://doi.org/10.36425/rehab104997
- ID: 104997
Cite item
Full Text
Abstract
Since its first detection, coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection has spread rapidly around the world. Although coronavirus SARS-CoV-2 primarily targets the respiratory system, complications in other organ systems (cardiovascular, neurological, and renal) can also contribute to death from the disease. Clinical experience thus far has shown substantial heterogeneity in the trajectory of SARS-CoV-2 infection, spanning from asymptomatic to mild, moderate, and severe disease forms with low survival rates. Accurate prediction of COVID-19 mortality and the identification of contributing factors would allow for targeted strategies in patients with the high risk of death. We aimed to identify clinical and laboratory features that contributed the most to this prediction. An improved understanding of predictive factors for COVID-19 is crucial for identify those with higher risk of mortality and for clinical decision making to reduce the risk of death. The main risk factors for the severe course of COVID-19, the development of complications and death include old age, concomitant diseases (cardiovascular diseases, chronic lung diseases, diabetes mellitus and hypertension), body temperature ≥37.8°C, oxygen saturation <92%, quantitative and functional depletion of innate immunity, bilateral pulmonary infiltrates, increased levels of laboratory parameters of systemic inflammation, respiratory, cardiac, renal and/or hepatic failure. Proper assessment of prognostic factors and careful monitoring to ensure the necessary interventions at the appropriate time in high-risk patients can reduce the fatality rate from COVID-19.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey G. Sсherbak
Saint Petersburg City Hospital No 40; Saint-Petersburg State University
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822
MD, Dr. Sci. (Med.), Professor
Russian Federation, Saint Petersburg; Saint PetersburgTatyana A. Kamilova
Saint Petersburg City Hospital No 40
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404
Cand. Sci. (Biol.)
Russian Federation, Saint PetersburgAleksandr S. Golota
Saint Petersburg City Hospital No 40
Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870
MD, Cand. Sci. (Med.), Associate Professor
Russian Federation, Saint PetersburgDmitry A. Vologzhanin
Saint Petersburg City Hospital No 40; Saint-Petersburg State University
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302
MD, Dr. Sci. (Med.)
Russian Federation, Saint Petersburg; Saint PetersburgReferences
- Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses–a statement of the Coronavirus Study Group. bioRxiv. 2020. doi: 10.1101/2020.02.07.937862
- Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020;395(10239):1763–1770. doi: 10.1016/S0140-6736(20)31189-2
- Chen R, Liang W, Jiang M, et al. Risk factors of fatal outcome in hospitalized subjects with Coronavirus Disease 2019 from a nationwide analysis in China. Chest. 2020;158(1):97–105. doi: 10.1016/j.chest.2020.04.010
- Fu L, Wang Bi, Yuan T, et al. Clinical characteristics of Coronavirus Disease 2019 (COVID-19) in China: a systematic review and meta-analysis. J Infect. 2020; 80(6):656–665. doi: 10.1016/j.jinf.2020.03.041
- Yadaw AS, Li YC, Bose S, et al. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. Lancet Digital Health. 2020; 2(10):e516–525. doi: 10.1016/S2589-7500(20)30217-X
- Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. doi: 10.1016/j.ijid.2020.03.017
- Li J, He X, Yuan Y, et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pneumonia. Am J Infect Control. 2020;S0196-6553(20)30369–30372. doi: 10.1016/j.ajic.2020.06.008
- Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020;81(2):e16–e25. doi: 10.1016/j.jinf.2020.04.021
- Xu B, Fan CY, Wang AL, et al. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China. J Infect. 2020;81(1): e51–e60. doi: 10.1016/j.jinf.2020.04.012
- Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–481. doi: 10.1016/S2213-2600(20)30079-5
- World Health Organization. Coronavirus disease 2019 (COVID-19). Situation report 72. Available from: https://www.un.org/unispal/document/coronavirus-disease-2019-covid-19-who-situation-report-72/
- Zhang Y, Xiao Y, Zhang S. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575
- Stawiski EW, Diwanji D, Suryamohan K, et al. Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. bioRxiv. 2020. doi: 10.1101/2020.04.07.024752
- Gemmati D, Bramanti B, Serino ML, et al. COVID-19 and individual genetic susceptibility/receptivity: role of ACE1/ACE2 genes, immunity, inflammation and coagulation. Might the double X-chromosome in females be protective against SARS-CoV-2 compared to the single X-chromosome in males? Int J Mol Sci. 2020;21(10):3474. doi: 10.3390/ijms21103474
- Fu J, Zhou Bu, Zhang L, et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep. 2020;47(6):4383–4392. doi: 10.1007/s11033-020-05478-4
- Cai Q, Huang D, Yu H, et al. COVID-19: abnormal liver function tests. J Hepatol. 2020;73(3):566–574. doi: 10.1016/j.jhep.2020.04.006
- Centurión OA, Scavenius KE, García LB, et al. Potential mechanisms of cardiac injury and common pathways of inflammation in patients with COVID-19. Crit Pathw Cardiol. 2020;10.1097/HPC.0000000000000227. doi: 10.1097/HPC.0000000000000227
- Aboughdir M, Kirwin T, Khader AA, Wang B. Prognostic value of cardiovascular biomarkers in COVID-19: a review. Viruses. 2020;12(5):527. doi: 10.3390/v12050527
- Chang FY, Chen HC, Chen PJ, et al. Immunologic aspects of characteristics, diagnosis, and treatment of Coronavirus Disease 2019 (COVID-19). J Biomed Sci. 2020;27(1):72. doi: 10.1186/s12929-020-00663-w
- Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, et al. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; S1359-6101(20)30109-X. doi: 10.1016/j.cytogfr.2020.06.001
- Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036–1045.e9. doi: 10.1016/j.cell.2020.04.026
- Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027
- Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567. doi: 10.1016/j.autrev.2020.102567
- Weiskopf D, Schmitz KS, Raadsen MP, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020;5(48):eabd2071. doi: 10.1126/sciimmunol.abd2071
- Braun J, Loyal L, Frentsch M, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020. doi: 10.1038/s41586-020-2598-9
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3
- Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi: 10.1172/JCI137244
- Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5): 541–543. doi: 10.1038/s41423-020-0401-3
- Thevarajan I, Nguyen TH, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med. 2020; 26(4):453–455. doi: 10.1038/s41591-020-0819-2
- Yang X, Dai T, Zhou X, et al. Analysis of adaptive immune cell populations and phenotypes in the patients infected by SARS-CoV-2. medRxiv. 2020. doi: 10.1101/2020.03.23.20040675
- Huang AT, Garcia-Carreras B, Hitchings MD, et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020;2020.04.14.20065771. doi: 10.1101/2020.04.14.20065771
- Haveri A, Smura T, Kuivanen S, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 2020;25(11):2000266. doi: 10.2807/1560-7917.ES.2020.25.11.2000266
- Lou B, Li T, Zheng S, et al. Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset. Eur Respir J. 2020;56(2):2000763. doi: 10.1183/13993003.00763-2020
- Okba NM, Muller MA, Li W, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis. 2020;26(7):1478–1488. doi: 10.3201/eid2607.200841
- Wolfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–469. doi: 10.1038/s41586-020-2196-x
- Wu F, Wang A, Liu M, et al. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 recovered patient cohort and their implications. medRxiv. 2020. doi: 10.1101/2020.03.30.20047365
- Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel Coronavirus Disease 2019. Clin Infect Dis. 2020;ciaa344. doi: 10.1093/cid/ciaa344
- Ju B, Zhang Q, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020;584(7819): 115–119. doi: 10.1038/s41586-020-2380-z.64
- Vabret N, Britton GJ, Gruber C, et al.; Sinai Immunology Review Project. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–941. doi: 10.1016/j.immuni.2020.05.002
- Guo C, Li B, Ma H, et al. Tocilizumab treatment in severe COVID-19 patients attenuates the inflammatory storm incited by monocyte centric immune interactions revealed by single-cell analysis. bioRxiv. 2020. doi: 10.1101/2020.04.08.029769
- Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020;6:31. doi: 10.1038/s41421-020-0168-9
- Ong EZ, Chan YF, Leong WY, et al. A dynamic immune response shapes COVID-19 progression. Cell Host Microbe. 2020;27(6):879–882. doi: 10.1016/j.chom.2020.03.021
- Barnes BJ, Adrover JM, Borczuk A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652
- Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
- Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of interleukin-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020; 146(1):128–136. doi: 10.1016/j.jaci.2020.05.008
- Liu F, Li L, Xu M, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370
- Wang F, Nie J, Wang H, et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J Infect Dis. 2020;221(11):1762–1769. doi: 10.1093/infdis/jiaa150
- Wang W, He J, Lie P, et al. The definition and risks of cytokine release syndrome-like in 11 COVID-19-infected pneumonia critically ill patients: Disease Characteristics and Retrospective Analysis. medRxiv. 2020. doi: 10.1101/2020.02.26.20026989
- Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0
- Zhu Z, Cai T, Fan L, et al. Clinical value of immune- inflammatory parameters to assess the severity of Coronavirus Disease 2019. Int J Infect Dis. 2020;95:332–339. doi: 10.1016/j.ijid.2020.04.041
- Yang Y, Shen C, Li J, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv. 2020. doi: 10.1101/2020.03.02.20029975
- Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. 2020;ciaa410. doi: 10.1093/cid/ciaa410
- Ahmadpoor P, Rostaing L. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection. Transpl Int. 2020;33(7):824–825. doi: 10.1111/tri.13611
- Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061–1069. doi: 10.1001/jama.2020.1585
- Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. doi: 10.1016/j.cytogfr.2020.05.003
- Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574–1581. doi: 10.1001/jama.2020.5394
- Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. doi: 10.1111/all.14238
- McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and Macrophage Activation Syndrome-like disease. Autoimmun Rev. 2020;19(6):102537. doi: 10.1016/j.autrev.2020.102537
- Kivela P. Paradigm shift for COVID-19 response: identifying high-risk individuals and treating inflammation. West J Emerg Med. 2020;21(3):473–476. doi: 10.5811/westjem.2020.3.47520
- Guan WJ, Ni ZY, Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382(18):1708–1720. doi: 10.1056/NEJMoa2002032
- Chen N, Zhou M, Dong X. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7
- Xu YH, Dong JH, An WM. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. J Infect. 2020;80(4):394–400. doi: 10.1016/j.jinf.2020.02.017
- Lippi G, Plebani M. The critical role of laboratory medicine during coronavirus disease 2019 (COVID19) and other viral outbreaks. Clin Chem Lab Med. 2020;58(7): 1063–1069. doi: 10.1515/cclm-2020-0240
- Fan BE, Chong VC, Chan SS, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95(6):E131–E134. doi: 10.1002/ajh.25774
- Buoro S, Di Marco F, Rizzi M, et al. Papa Giovanni XXIII Bergamo Hospital at the time of the COVID-19 outbreak: letter from the warfront. Int J Lab Hematol. 2020;42 (Suppl 1):8–10. doi: 10.1111/ijlh.13207
- Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533–535. doi: 10.1038/s41423-020-0402-2
- Nie S, Zhao X, Zhao K, et al. Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus disease 2019 (COVID-19): a retrospective study. medRxiv. 2020b. doi: 10.1101/2020.03.24.20042283
- Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med. 2020; 58(7):1131–1134. doi: 10.1515/cclm-2020-0198
- Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248
- Li K, Chen D, Chen S, et al. Predictors of fatality including radiographic findings in adults with COVID-19. Respir Res. 2020;21(1):146. doi: 10.1186/s12931-020-01411-2
- Chen Y, Feng Z, Diao B, et al. The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv. 2020. doi: 10.1101/2020.03.27.20045427
- Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X
- Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827
- Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020. doi: 10.1093/nsr/nwaa041
- Liu B, Han J, Cheng X, et al. Persistent SARS-CoV-2 presence is companied with defects in adaptive immune system in non-severe COVID-19 patients. medRxiv. 2020. doi: 10.1101/2020.03.26.20044768
- Chen X, Ling J, Mo P, et al. Restoration of leukomonocyte counts is associated with viral clearance in COVID-19 hospitalized patients. medRxiv. 2020. doi: 10.1101/2020.03.03.20030437
- Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID‐19. Am J Hematol. 2020;95(Issue 7):834–847. doi: 10.1002/ajh.25829
- Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020; 26(6):767–772. doi: 10.1016/j.cmi.2020.04.012
- Lee JY, Kim HA, Huh K, et al. Risk factors for mortality and respiratory support in elderly patients hospitalized with COVID-19 in Korea. J Korean Med Sci. 2020; 35(23):e223. doi: 10.3346/jkms.2020.35.e223
- Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med. 2020;e202033. doi: 10.1001/jamainternmed.2020.2033
- Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of COVID-19 infection: systematic review and critical appraisal. BMJ. 2020;369:m1328. doi: 10.1136/bmj.m1328
- Frater JL, Zini G, d’Onofrio G, Rogers HJ. COVID-19 and the clinical hematology laboratory. Int J Lab Hematol. 2020;42 Suppl 1:11–18. doi: 10.1111/ijlh.13229
- Sallard E, Lescure FX, Yazdanpanah Y, et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res. 2020;178:104791. doi: 10.1016/j.antiviral.2020.104791
- Zhou Q, Wei XS, Xiang X, et al. Interferon-a2b treatment for COVID-19. medRxiv. 2020;2020(4). doi: 10.1101/2020.04.06.20042580.06.20042580
- Meng Z, Wang T, Li C, et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. medRxiv. 2020;2020(4). doi: 10.1101/2020.04.11.20061473
- Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. Rev Med Virol. 2020;e2141. doi: 10.1002/rmv.2141
- Liu B, Li M, Zhou Z, et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun. 2020;111:102452. doi: 10.1016/j.jaut.2020.102452
- Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045
- Li Z, Yongxiang Y, Xiaomei L, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020;10.1002/jmv.25727. doi: 10.1002/jmv.25727
- Lippi G, Simundic AM, Plebani M. Potential preanalytical and analytical vulnerabilities in the laboratory diagnosis of coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2020;58(7):1070–1076. doi: 10.1515/cclm-2020-0285
- Fogarty H, Townsend L, Cheallaigh CN, et al. COVID-19 Coagulopathy in Caucasian patients. Br J Haematol. 2020;189(6):1060–1061. doi: 10.1111/bjh.16791
- Poor HD, Ventetuolo CE, Tolbert T, et al. COVID-19 critical illness pathophysiology driven by diffuse pulmonary thrombi and pulmonary endothelial dysfunction responsive to thrombolysis. Clin Transl Med. 2020;10(2):e44. doi: 10.1002/ctm2.44
- Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110–118. doi: 10.1016/j.jaci.2020.04.006
- Lillicrap D. Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia. J Thromb Haemost. 2020;18(4):786–787. doi: 10.1111/jth.14781
- Varga Z, Flammer AJ, Steigeret P, et al. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet. 2020;395 (10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5
- Jang JG, Hur J, Choi EY, et al. Prognostic factors for severe Coronavirus Disease 2019 in Daegu, Korea. J Korean Med Sci. 2020;35(23):e209. doi: 10.3346/jkms.2020.35.e209
- Zhao X, Zhang B, Li P, et al. Incidence, clinical characteristics and prognostic factor of patients with COVID-19: a systematic review and meta-analysis. medRxiv. 2020. doi: 10.1101/2020.03.17.20037572
- Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3. doi: 10.1016/j.chom.2020.04.009
- Gao L, Jiang D, Wen XS, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res. 2020;21(1):83. doi: 10.1186/s12931-020-01352-w
- Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. doi: 10.1038/s41392-020-0148-4
- Poggiali E, Ramos PM, Bastoni D, et al. Abdominal pain: a real challenge in novel COVID-19 Infection. Eur J Case Rep Intern Med. 2020;7(4):001632. doi: 10.12890/2020_001632
- Espinosa OA, Zanetti A, Antunes EF, et al. Prevalence of comorbidities in patients and mortality cases affected by SARS-CoV2: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo. 2020;62:e43. doi: 10.1590/S1678-9946202062043
- Korean Society of Infectious Diseases. Korea Centers for Disease Control and Prevention Analysis on 54 mortality cases of coronavirus disease 2019 in the Republic of Korea from January 19 to March 10, 2020. J Korean Med Sci. 2020;35:e132. doi: 10.3346/jkms.2020.35.e132
- Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020a;63(3):390–391. doi: 10.1016/j.pcad.2020.03.001
- Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. doi: 10.1001/jamacardio.2020.0950
- Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. doi: 10.1001/jamacardio.2020.1017
- Lieberman NA, Peddu V, Xie H, et al. In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biol. 2020;18(9):e3000849. doi: 10.1371/journal.pbio.3000849
- Ellinghaus D, Degenhardt F, Bujanda L, et al. Genome-wide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020;NEJMoa2020283. doi: 10.1056/NEJMoa2020283
- The COVID-19 Host Genetics Initiative (Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Analytical and Translational Genetic Unit, Massachusetts General Hospital, Harvard Medical School, Boston, USA). The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet. 2020;28(6):715–718. doi: 10.1038/s41431-020-0636-6
- Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neandertals. bioRxiv. doi: 10.1101/2020.07.03.186296
- Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging. 2020;12(11):10087–10098. doi: 10.18632/aging.103415
- Benetti E, Tita R, Spiga O, et al. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. Eur J Hum Genet. 2020;1–13. doi: 10.1038/s41431-020-0691-z
- Lu C, Gam R, Pandurangan AP, Gough J. Genetic risk factors for death with SARS-CoV-2 from the UK Biobank. medRxiv. 2020. doi: 10.1101/2020.07.01.20144592
Supplementary files
