Possibilities of using biomechanical human motion capture systems in medical rehabilitation (review)

Cover Page

Cite item

Full Text

Abstract

Biomechanical motion capture is the most accurate non-contact instrumental method of studying human locomotion and is increasingly being used in the medical rehabilitation of patients with various diseases. Human motion capture systems are promising tools for clinical use to assess and control the correct execution of movements, as well as to identify injury risk factors.

Currently, human motion capture systems are mainly used only in scientific research. The development and implementation of biomechanical motion capture systems in clinical practice can help doctors determine the best solution when planning medical rehabilitation and, thereby, reduce the recovery time of patients.

This review aims to present up-to-date data on motion capture techniques and features of their application in the medical rehabilitation of patients with diseases of the nervous system. The review provides a brief overview of the existing technologies for the study of locomotor functions. The principles of operation, advantages and disadvantages of optoelectronic, electromagnetic, inertial and ultrasonic measuring systems are presented. The review describes in detail the possibilities of biomechanical motion capture in conducting a personalized diagnostic process, planning and evaluating the results of medical rehabilitation in patients with stroke, Parkinson's disease, cerebral palsy, spinal cord injury and multiple sclerosis.

The search was conducted in the databases eLibrary, PubMed, Scopus, Web of Science and Google Academy (Google Scholar). The review includes studies in which motion capture systems were used and spatial-temporal, kinematic, kinetic and electromyographic parameters were analyzed.

About the authors

Gennadii E. Sheiko

Privolzhsky Research Medical University

Author for correspondence.
Email: sheikogennadii@yandex.ru
ORCID iD: 0000-0003-0402-7430
SPIN-code: 8575-1319

MD, Cand. Sci. (Med.)

Russian Federation, Nizhny Novgorod

Anna N. Belova

Privolzhsky Research Medical University

Email: anbelova@mail.ru
ORCID iD: 0000-0001-9719-6772
SPIN-code: 3084-3096

MD, Dr. Sci. (Med.), Professor

Russian Federation, Nizhny Novgorod

Natalia N. Rukina

Privolzhsky Research Medical University

Email: rukinann@mail.ru
ORCID iD: 0000-0002-0719-3402
SPIN-code: 5028-4577

MD, Cand. Sci. (Med.), Senior Research Associate

Russian Federation, Nizhny Novgorod

Nadezhda L. Korotkova

Privolzhsky Research Medical University; The First Sechenov Moscow State Medical University (Sechenov University)

Email: korotkova-home@mail.ru
ORCID iD: 0000-0001-7812-1433
SPIN-code: 8709-8397

MD, Dr. Sci. (Med.), Professor

Russian Federation, Nizhny Novgorod; Moscow

References

  1. Roggio F, Ravalli S, Maugeri G, et al. Technological advancements in the analysis of human motion and posture management through digital devices. World J Orthop. 2021;12(7):467–484. doi: 10.5312/wjo.v12.i7.467
  2. Weber W, Weber E. Ueber die mechanik der menschlichen gehwerkzeuge, nebst der beschreibung eines versuchs über das herausfallen des schenkelkopfs aus der pfanne im luftverdünnten raume. Annals Physics Chem. 1837;40:1–13. doi: 10.1002/andp.18371160102
  3. Mary E. Animal mechanism: a treatise on terrestrial and aerial locomotion. London: Henrys. King & Co.; 1874. 283 p.
  4. Mbridge E. Animal locomotion. Philadelphia: J.B. Lippincott Company; 1887.
  5. Braune W, Fischer O. Determination of the moments of inertia of the human body and its limbs. Berlin Heidelberg: Springer-Verlag; 1988. 84 p. doi: 10.1007/978-3-662-11236-6
  6. Borzikov VV, Rukina NN, Vorobyova OV, et al. Human motion video analysis in clinical practice (review). Modern Technologies Med. 2015;7(4):201–210. (In Russ). doi: 10.17691/stm2015.7.4.26
  7. Krott NL, Wild M, Betsch M. Meta-analysis of the validity and reliability of rasterstereographic measurements of spinal posture. Eur Spine J. 2020;29:2392–2401. doi: 10.1007/s00586-020-06402-x
  8. Alexander N, Schwameder H. Lower limb joint forces during walking on the level and slopes at different inclinations. Gait Posture. 2016;45:137–142. doi: 10.1016/j.gaitpost.2016.01.022
  9. Van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018;18(6):806–819. doi: 10.1080/17461391.2018.1463397
  10. Ceseracciu E, Sawacha Z, Cobelli C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One. 2014;9(3):e87640. doi: 10.1371/journal.pone.0087640
  11. Skvortsov DV. The methods of investigation of kinematics and modern standards. Video analysis. Physical Therapy Sports Med. 2012;12:4–10. (In Russ).
  12. Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. J Biomech. 2002;35(4):543–548. doi: 10.1016/s0021-9290(01)00222-6
  13. Aksenov AY, Hutchins S, Klishkovskaya TA. Application of gait video-based analysis to improve walking distance in patients with intermittent claudication. Orthopaedic Genius. 2019;25(1):102–110. (In Russ). doi: 10.18019/1028-4427-2019-25-1-102-110
  14. Lanshammar H, Persson T, Medved V. Comparison between a marker-based and a marker-free method to estimate centre of rotation using video image analysis. In: Second World Congress of Biomechanics. Amsterdam; 1994.
  15. Kent J, Franklyn-Miller A. Biomechanical models in the study of lower limb amputee kinematics: a review. Prosthet Orthot Int. 2011;35(2):124–139. doi: 10.1177/030936461140 7677
  16. Sanchez AC, Martin JJ, Mazo JS. Development of a new calibration procedure and its experimental validation applied to a human motion capture system. J Biomech Eng. 2014;136(12):124502. doi: 10.1115/1.4028523
  17. Schepers HM, Veltink, PH. Stochastic magnetic measurement model for relative position and orientation estimation. Measurement Sci Technology. 2010;21(6):65801. doi: 10.1088/0957-0233/21/6/065801
  18. Burcev VP, Burcev SV. Modern means and methods of measurements in the application to sports cartography. Moscow: Akademprint; 2009. 102 p. (In Russ).
  19. Berber M, Ustun A, Yetkin M. Comparison of accuracy of GPS techniques. Measurement. 2012;45(7):1742–1746. doi: 10.1016/j.measurement.2012.04.010
  20. Duffield R, Reid M, Baker J, Spratford W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J Sci Med Sport. 2010;13(5):523–525. doi: 10.1016/j.jsams.2009.07.003
  21. Feuvrier F, Sijobert B, Azevedo C, et al. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome. Ann Phys Rehabil Med. 2020;63(3):195–201. doi: 10.1016/j.rehab.2019.03.007
  22. Bischoff O, Heidmann N, Rust J, Paul S. Design and implementation of an ultrasonic localization system for wireless sensor networks using angle-of-arrival and distance measurement. Procedia Engineering. 2012;47:953–956. doi: 10.1016/j.proeng.2012.09.304
  23. Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: pathophysiology and rehabilitation strategies. Clin Neurophysiology. 2015;45(4-5): 335–355. doi: 10.1016/j.neucli.2015.09.005
  24. Seo JS, Yang HS, Jung S, et al. Effect of reducing assistance during robotassisted gait training on step length asymmetry in patients with hemiplegic stroke. Medicine (Baltimore). 2018;97(33):e11792. doi: 10.1097/MD.0000000000011792
  25. Das S, Trutoiu L, Murai A, et al. Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6789–6792. doi: 10.1109/IEMBS.2011.6091674
  26. Růžička E, Krupička R, Zárubová K, et al. Tests of manual dexterity and speed in Parkinson’s disease: Not all measure the same. Parkinsonism Relat Disord. 2016;28:118–123. doi: 10.1016/j.parkreldis.2016.05.009
  27. Rukina NN, Sheiko GE, Kuznetsov AN, Vorobyova OV. Biomechanical study of walking and vertical posture in 4–6-year-old children with spastic forms of cerebral palsy. Bulletin Rehabilitation Med. 2021;20(2):49–61. (In Russ). doi: 10.38025/2078-1962-2021-20-2-49-61
  28. Simão CR, Regalado IC, Spaniol AP, et al. Immediate effects of a single treadmill session with additional ankle loading on gait in children with hemiparetic cerebral palsy. Neuro Rehabilitation. 2019;44(1):9–17. doi: 10.3233/NRE-182516
  29. Triolo RJ, Bailey SN, Miller ME, et al. Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury. Arch Phys Med Rehabil. 2013;94(9):1766–1775. doi: 10.1016/j.apmr.2013.02.023
  30. Warner C, Easthope CA, Cart A, Deko L. Towards a mobile gait analysis for patients with a spinal cord injury: a robust algorithm validated for slow walking speeds. Sensors (Basel). 2021;21(21):7381. doi: 10.3390/s21217381
  31. Filli L, Sutter T, Easthope CS, et al. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep. 2018;8(1):4984. doi: 10.1038/s41598-018-22676-0
  32. Güner S, Haghari S, Alsancak S, et al. Effect of insoles with arch support on gait pattern in patients with multiple sclerosis. Turk J Phys Med Rehabil. 2018;64(3):261–267. doi: 10.5606/tftrd.2018.2246
  33. Carratalá-Tejada M, Cuesta-Gómez A, Ortiz-Gutiérrez R, et al. Reflex locomotion therapy for balance, gait, and fatigue rehabilitation in subjects with multiple sclerosis. J Clin Med. 2022;11(3):567. doi: 10.3390/jcm11030567
  34. Mahmood MN, Peeters LH, Paalman M, et al. Development and evaluation of a passive trunk support system for Duchenne muscular dystrophy patients. J Neuroeng Rehabil. 2018;15(1):22. doi: 10.1186/s12984-018-0353-3
  35. In TS, Jung JH, Jung KS, Co HY. Effects of the multidimensional treatment on pain, disability, and sitting posture in patients with low back pain: a randomized controlled trial. Pain Res Manag. 2021;2021:5581491. doi: 10.1155/2021/5581491
  36. Ringhof S, Patzer I, Beil J, et al. Does a passive unilateral lower limb exoskeleton affect human static and dynamic balance control? Front Sports Act Living. 2019;1:22. doi: 10.3389/fspor.2019.00022
  37. Li Y, Koldenhoven RM, Liu T, Venuti CE. Age-related gait development in children with autism spectrum disorder. Gait Posture. 2021;84:260–266. doi: 10.1016/j.gaitpost.2020.12.022
  38. Kim CM, Eng JJ. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture. 2004;20(2):140–146. doi: 10.1016/j.gaitpost.2003.07.002
  39. Stanhope VA, Knarr BA, Reisman DS, Higginson JS. Frontal plane compensatory strategies associated with self-selected walking speed in individuals post-stroke. Clin Biomech (Bristol, Avon). 2014;29(5):518–522. doi: 10.1016/j.clinbiomech.2014.03.013
  40. Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Physical Therapy. 2011;91(3):392–403. doi: 10.2522/ptj.20090425
  41. Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change poststroke. Part 2: Exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017;24(5):394–403. doi: 10.1080/10749357.2017.1282413
  42. Patterson KK, Parafianowicz I, Danells CJ, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304–310. doi: 10.1016/j.apmr.2007.08.142
  43. Stokic DS, Horn TS, Ramshur JM, Chow JW. Agreement between temporospatial gait parameters of an electronic walkway and a motion capture system in healthy and chronic stroke populations. Am J Phys Med Rehabil. 2009;88(6):437–444. doi: 10.1097/PHM.0b013e3181a5b1ec
  44. Fatone S, Gard SA, Malas BS. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Arch Phys Med Rehabil. 2009;90(5):810–818. doi: 10.1016/j.apmr.2008.11.012
  45. Kobayashi T, Orendurff MS, Hun G, et al. The effects of alignment of an articulated ankle-foot orthosis on lower limb joint kinematics and kinetics during gait in individuals post-stroke. J Biomech. 2019;83:57–64. doi: 10.1016/j.jbiomech.2018.11.019
  46. Yeung LF, Ockenfels C, Pango MK, et al. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil. 2018;15(1):51. doi: 10.1186/s12984-018-0394-7
  47. Swank C, Almutairi S, Wang-Price S, Gao F. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke. Top Stroke Rehabil. 2020;27(7): 503–515. doi: 10.1080/10749357.2020.1728954
  48. Hansen GM, Kersting UG, Pedersen AR, et al. Three-dimensional kinematics of shoulder function in stroke patients: Inter- and intra-rater reliability. J Electromyogr Kinesiol. 2019;47:35–42. doi: 10.1016/j.jelekin.2019.05.006
  49. Alarcón-Aldana AC, Callejas-Cuervo M, Bo AP. Upper limb physical rehabilitation using serious videogames and motion capture systems: a systematic review. Sensors (Basel). 2020;20(21):5989. doi: 10.3390/s20215989
  50. Jakob V, Küderle A, Kluge F, et al. Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson’s disease. Sensors (Basel). 2021;21(22):7680. doi: 10.3390/s21227680
  51. Pantzar-Castilla E, Cereatti A, Figari G, et al. Knee joint sagittal plane movement in cerebral palsy: a comparative study of 2-dimensional markerless video and 3-dimensional gait analysis. Acta Orthop Actions. 2018;89(6):656–661. doi: 10.1080/17453674.2018.1525195
  52. Wright M, Twose D, Gorter JW. Scootering for children and youth is more than fun: exploration of a feasible approach to improve function and fitness. Pediatr Phys Ther. 2021;33(4):218–225. doi: 10.1097/PEP.0000000000000829
  53. Korshunov SD, Davletyarova KV, Kapilevich LV. Biomechanical principles physical rehabilitation of children with cerebral palsy. Bulletin Siberian Med. 2016;15(3):55–62. (In Russ). doi: 10.20538/1682-0363-2016-3-55-62
  54. Klotz MC, Kost L, Braatz F, et al. Motion capture of the upper extremity during activities of daily living in patients with spastic hemiplegic cerebral palsy. Gait Posture. 2013;38(1):148–152. doi: 10.1016/j.gaitpost.2012.11.005
  55. Wood KC, Lathan CE, Kaufman KR. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2013;21(2): 300–305. doi: 10.1109/TNSRE.2012.2227804
  56. Sohn WJ, Sipahi R, TD, Sternad D. Portable motion-analysis device for upper-limb research, assessment, and rehabilitation in non-laboratory settings. IEEE J Transl Eng Health Med. 2019;7:2800314. doi: 10.1109/JTEHM.2019.2953257
  57. Haberfehlner H, Goudriaan M, Bonouvrié LA, et al. Instrumented assessment of motor function in dyskinetic cerebral palsy: a systematic review. J Neuroeng Rehabil. 2020;17(1):39. doi: 10.1186/s12984-020-00658-6
  58. Karjakin NN, Belova AN, Sushin VO, et al. Potential benefits and limitations of robotic exoskeleton usage in patients with spinal cord injury: a review. Bulletin Rehabilitation Med. 2020;96(2):68–78. (In Russ). doi: 10.38025/2078-1962-2020-96-2-68-78
  59. Coca-Tanya M, Cuesta-Gómez A, Molina-Rueda F, Carratalá-Tejada M. Gait pattern in people with multiple sclerosis: a systematic review. Diagnostics (Basel). 2021;11(4):584. doi: 10.3390/diagnostics11040584
  60. Shanahan CJ, Boonstra FM, Lizama LE, et al. Technologies for advanced gait and balance assessments in people with multiple sclerosis. Front Neurol. 2018;8:708. doi: 10.3389/fneur.2017.00708

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The position of markers and a three-dimensional human model built by the Simi Motion program (Germany).

Download (658KB)
3. Fig. 2. Active (left) and passive (right) markers of the Simi Motion video analysis system (Germany).

Download (675KB)
4. Fig. 3. An example of the placement of active markers of the Simi Motion video analysis system (Germany) on the subject.

Download (801KB)
5. Fig. 4. Video analysis of walking with an assessment of movements in the left lower limb using active markers, built by the Simi Motion program (Germany).

Download (589KB)

Copyright (c) 2022 Sheiko G.E., Belova A.N., Rukina N.N., Korotkova N.L.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».