Possibilities of using biomechanical human motion capture systems in medical rehabilitation (review)
- Authors: Sheiko G.E.1, Belova A.N.1, Rukina N.N.1, Korotkova N.L.1,2
-
Affiliations:
- Privolzhsky Research Medical University
- The First Sechenov Moscow State Medical University (Sechenov University)
- Issue: Vol 4, No 3 (2022)
- Pages: 181-196
- Section: REVIEWS
- URL: https://journal-vniispk.ru/2658-6843/article/view/109488
- DOI: https://doi.org/10.36425/rehab109488
- ID: 109488
Cite item
Full Text
Abstract
Biomechanical motion capture is the most accurate non-contact instrumental method of studying human locomotion and is increasingly being used in the medical rehabilitation of patients with various diseases. Human motion capture systems are promising tools for clinical use to assess and control the correct execution of movements, as well as to identify injury risk factors.
Currently, human motion capture systems are mainly used only in scientific research. The development and implementation of biomechanical motion capture systems in clinical practice can help doctors determine the best solution when planning medical rehabilitation and, thereby, reduce the recovery time of patients.
This review aims to present up-to-date data on motion capture techniques and features of their application in the medical rehabilitation of patients with diseases of the nervous system. The review provides a brief overview of the existing technologies for the study of locomotor functions. The principles of operation, advantages and disadvantages of optoelectronic, electromagnetic, inertial and ultrasonic measuring systems are presented. The review describes in detail the possibilities of biomechanical motion capture in conducting a personalized diagnostic process, planning and evaluating the results of medical rehabilitation in patients with stroke, Parkinson's disease, cerebral palsy, spinal cord injury and multiple sclerosis.
The search was conducted in the databases eLibrary, PubMed, Scopus, Web of Science and Google Academy (Google Scholar). The review includes studies in which motion capture systems were used and spatial-temporal, kinematic, kinetic and electromyographic parameters were analyzed.
Full Text
##article.viewOnOriginalSite##About the authors
Gennadii E. Sheiko
Privolzhsky Research Medical University
Author for correspondence.
Email: sheikogennadii@yandex.ru
ORCID iD: 0000-0003-0402-7430
SPIN-code: 8575-1319
MD, Cand. Sci. (Med.)
Russian Federation, Nizhny NovgorodAnna N. Belova
Privolzhsky Research Medical University
Email: anbelova@mail.ru
ORCID iD: 0000-0001-9719-6772
SPIN-code: 3084-3096
MD, Dr. Sci. (Med.), Professor
Russian Federation, Nizhny NovgorodNatalia N. Rukina
Privolzhsky Research Medical University
Email: rukinann@mail.ru
ORCID iD: 0000-0002-0719-3402
SPIN-code: 5028-4577
MD, Cand. Sci. (Med.), Senior Research Associate
Russian Federation, Nizhny NovgorodNadezhda L. Korotkova
Privolzhsky Research Medical University; The First Sechenov Moscow State Medical University (Sechenov University)
Email: korotkova-home@mail.ru
ORCID iD: 0000-0001-7812-1433
SPIN-code: 8709-8397
MD, Dr. Sci. (Med.), Professor
Russian Federation, Nizhny Novgorod; MoscowReferences
- Roggio F, Ravalli S, Maugeri G, et al. Technological advancements in the analysis of human motion and posture management through digital devices. World J Orthop. 2021;12(7):467–484. doi: 10.5312/wjo.v12.i7.467
- Weber W, Weber E. Ueber die mechanik der menschlichen gehwerkzeuge, nebst der beschreibung eines versuchs über das herausfallen des schenkelkopfs aus der pfanne im luftverdünnten raume. Annals Physics Chem. 1837;40:1–13. doi: 10.1002/andp.18371160102
- Mary E. Animal mechanism: a treatise on terrestrial and aerial locomotion. London: Henrys. King & Co.; 1874. 283 p.
- Mbridge E. Animal locomotion. Philadelphia: J.B. Lippincott Company; 1887.
- Braune W, Fischer O. Determination of the moments of inertia of the human body and its limbs. Berlin Heidelberg: Springer-Verlag; 1988. 84 p. doi: 10.1007/978-3-662-11236-6
- Borzikov VV, Rukina NN, Vorobyova OV, et al. Human motion video analysis in clinical practice (review). Modern Technologies Med. 2015;7(4):201–210. (In Russ). doi: 10.17691/stm2015.7.4.26
- Krott NL, Wild M, Betsch M. Meta-analysis of the validity and reliability of rasterstereographic measurements of spinal posture. Eur Spine J. 2020;29:2392–2401. doi: 10.1007/s00586-020-06402-x
- Alexander N, Schwameder H. Lower limb joint forces during walking on the level and slopes at different inclinations. Gait Posture. 2016;45:137–142. doi: 10.1016/j.gaitpost.2016.01.022
- Van der Kruk E, Reijne MM. Accuracy of human motion capture systems for sport applications; state-of-the-art review. Eur J Sport Sci. 2018;18(6):806–819. doi: 10.1080/17461391.2018.1463397
- Ceseracciu E, Sawacha Z, Cobelli C. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One. 2014;9(3):e87640. doi: 10.1371/journal.pone.0087640
- Skvortsov DV. The methods of investigation of kinematics and modern standards. Video analysis. Physical Therapy Sports Med. 2012;12:4–10. (In Russ).
- Wu G, Siegler S, Allard P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. J Biomech. 2002;35(4):543–548. doi: 10.1016/s0021-9290(01)00222-6
- Aksenov AY, Hutchins S, Klishkovskaya TA. Application of gait video-based analysis to improve walking distance in patients with intermittent claudication. Orthopaedic Genius. 2019;25(1):102–110. (In Russ). doi: 10.18019/1028-4427-2019-25-1-102-110
- Lanshammar H, Persson T, Medved V. Comparison between a marker-based and a marker-free method to estimate centre of rotation using video image analysis. In: Second World Congress of Biomechanics. Amsterdam; 1994.
- Kent J, Franklyn-Miller A. Biomechanical models in the study of lower limb amputee kinematics: a review. Prosthet Orthot Int. 2011;35(2):124–139. doi: 10.1177/030936461140 7677
- Sanchez AC, Martin JJ, Mazo JS. Development of a new calibration procedure and its experimental validation applied to a human motion capture system. J Biomech Eng. 2014;136(12):124502. doi: 10.1115/1.4028523
- Schepers HM, Veltink, PH. Stochastic magnetic measurement model for relative position and orientation estimation. Measurement Sci Technology. 2010;21(6):65801. doi: 10.1088/0957-0233/21/6/065801
- Burcev VP, Burcev SV. Modern means and methods of measurements in the application to sports cartography. Moscow: Akademprint; 2009. 102 p. (In Russ).
- Berber M, Ustun A, Yetkin M. Comparison of accuracy of GPS techniques. Measurement. 2012;45(7):1742–1746. doi: 10.1016/j.measurement.2012.04.010
- Duffield R, Reid M, Baker J, Spratford W. Accuracy and reliability of GPS devices for measurement of movement patterns in confined spaces for court-based sports. J Sci Med Sport. 2010;13(5):523–525. doi: 10.1016/j.jsams.2009.07.003
- Feuvrier F, Sijobert B, Azevedo C, et al. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome. Ann Phys Rehabil Med. 2020;63(3):195–201. doi: 10.1016/j.rehab.2019.03.007
- Bischoff O, Heidmann N, Rust J, Paul S. Design and implementation of an ultrasonic localization system for wireless sensor networks using angle-of-arrival and distance measurement. Procedia Engineering. 2012;47:953–956. doi: 10.1016/j.proeng.2012.09.304
- Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: pathophysiology and rehabilitation strategies. Clin Neurophysiology. 2015;45(4-5): 335–355. doi: 10.1016/j.neucli.2015.09.005
- Seo JS, Yang HS, Jung S, et al. Effect of reducing assistance during robotassisted gait training on step length asymmetry in patients with hemiplegic stroke. Medicine (Baltimore). 2018;97(33):e11792. doi: 10.1097/MD.0000000000011792
- Das S, Trutoiu L, Murai A, et al. Quantitative measurement of motor symptoms in Parkinson’s disease: a study with full-body motion capture data. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6789–6792. doi: 10.1109/IEMBS.2011.6091674
- Růžička E, Krupička R, Zárubová K, et al. Tests of manual dexterity and speed in Parkinson’s disease: Not all measure the same. Parkinsonism Relat Disord. 2016;28:118–123. doi: 10.1016/j.parkreldis.2016.05.009
- Rukina NN, Sheiko GE, Kuznetsov AN, Vorobyova OV. Biomechanical study of walking and vertical posture in 4–6-year-old children with spastic forms of cerebral palsy. Bulletin Rehabilitation Med. 2021;20(2):49–61. (In Russ). doi: 10.38025/2078-1962-2021-20-2-49-61
- Simão CR, Regalado IC, Spaniol AP, et al. Immediate effects of a single treadmill session with additional ankle loading on gait in children with hemiparetic cerebral palsy. Neuro Rehabilitation. 2019;44(1):9–17. doi: 10.3233/NRE-182516
- Triolo RJ, Bailey SN, Miller ME, et al. Effects of stimulating hip and trunk muscles on seated stability, posture, and reach after spinal cord injury. Arch Phys Med Rehabil. 2013;94(9):1766–1775. doi: 10.1016/j.apmr.2013.02.023
- Warner C, Easthope CA, Cart A, Deko L. Towards a mobile gait analysis for patients with a spinal cord injury: a robust algorithm validated for slow walking speeds. Sensors (Basel). 2021;21(21):7381. doi: 10.3390/s21217381
- Filli L, Sutter T, Easthope CS, et al. Profiling walking dysfunction in multiple sclerosis: characterisation, classification and progression over time. Sci Rep. 2018;8(1):4984. doi: 10.1038/s41598-018-22676-0
- Güner S, Haghari S, Alsancak S, et al. Effect of insoles with arch support on gait pattern in patients with multiple sclerosis. Turk J Phys Med Rehabil. 2018;64(3):261–267. doi: 10.5606/tftrd.2018.2246
- Carratalá-Tejada M, Cuesta-Gómez A, Ortiz-Gutiérrez R, et al. Reflex locomotion therapy for balance, gait, and fatigue rehabilitation in subjects with multiple sclerosis. J Clin Med. 2022;11(3):567. doi: 10.3390/jcm11030567
- Mahmood MN, Peeters LH, Paalman M, et al. Development and evaluation of a passive trunk support system for Duchenne muscular dystrophy patients. J Neuroeng Rehabil. 2018;15(1):22. doi: 10.1186/s12984-018-0353-3
- In TS, Jung JH, Jung KS, Co HY. Effects of the multidimensional treatment on pain, disability, and sitting posture in patients with low back pain: a randomized controlled trial. Pain Res Manag. 2021;2021:5581491. doi: 10.1155/2021/5581491
- Ringhof S, Patzer I, Beil J, et al. Does a passive unilateral lower limb exoskeleton affect human static and dynamic balance control? Front Sports Act Living. 2019;1:22. doi: 10.3389/fspor.2019.00022
- Li Y, Koldenhoven RM, Liu T, Venuti CE. Age-related gait development in children with autism spectrum disorder. Gait Posture. 2021;84:260–266. doi: 10.1016/j.gaitpost.2020.12.022
- Kim CM, Eng JJ. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture. 2004;20(2):140–146. doi: 10.1016/j.gaitpost.2003.07.002
- Stanhope VA, Knarr BA, Reisman DS, Higginson JS. Frontal plane compensatory strategies associated with self-selected walking speed in individuals post-stroke. Clin Biomech (Bristol, Avon). 2014;29(5):518–522. doi: 10.1016/j.clinbiomech.2014.03.013
- Tyrell CM, Roos MA, Rudolph KS, Reisman DS. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Physical Therapy. 2011;91(3):392–403. doi: 10.2522/ptj.20090425
- Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change poststroke. Part 2: Exercise capacity, muscle activation, kinetics, and kinematics. Top Stroke Rehabil. 2017;24(5):394–403. doi: 10.1080/10749357.2017.1282413
- Patterson KK, Parafianowicz I, Danells CJ, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304–310. doi: 10.1016/j.apmr.2007.08.142
- Stokic DS, Horn TS, Ramshur JM, Chow JW. Agreement between temporospatial gait parameters of an electronic walkway and a motion capture system in healthy and chronic stroke populations. Am J Phys Med Rehabil. 2009;88(6):437–444. doi: 10.1097/PHM.0b013e3181a5b1ec
- Fatone S, Gard SA, Malas BS. Effect of ankle-foot orthosis alignment and foot-plate length on the gait of adults with poststroke hemiplegia. Arch Phys Med Rehabil. 2009;90(5):810–818. doi: 10.1016/j.apmr.2008.11.012
- Kobayashi T, Orendurff MS, Hun G, et al. The effects of alignment of an articulated ankle-foot orthosis on lower limb joint kinematics and kinetics during gait in individuals post-stroke. J Biomech. 2019;83:57–64. doi: 10.1016/j.jbiomech.2018.11.019
- Yeung LF, Ockenfels C, Pango MK, et al. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil. 2018;15(1):51. doi: 10.1186/s12984-018-0394-7
- Swank C, Almutairi S, Wang-Price S, Gao F. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke. Top Stroke Rehabil. 2020;27(7): 503–515. doi: 10.1080/10749357.2020.1728954
- Hansen GM, Kersting UG, Pedersen AR, et al. Three-dimensional kinematics of shoulder function in stroke patients: Inter- and intra-rater reliability. J Electromyogr Kinesiol. 2019;47:35–42. doi: 10.1016/j.jelekin.2019.05.006
- Alarcón-Aldana AC, Callejas-Cuervo M, Bo AP. Upper limb physical rehabilitation using serious videogames and motion capture systems: a systematic review. Sensors (Basel). 2020;20(21):5989. doi: 10.3390/s20215989
- Jakob V, Küderle A, Kluge F, et al. Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with Parkinson’s disease. Sensors (Basel). 2021;21(22):7680. doi: 10.3390/s21227680
- Pantzar-Castilla E, Cereatti A, Figari G, et al. Knee joint sagittal plane movement in cerebral palsy: a comparative study of 2-dimensional markerless video and 3-dimensional gait analysis. Acta Orthop Actions. 2018;89(6):656–661. doi: 10.1080/17453674.2018.1525195
- Wright M, Twose D, Gorter JW. Scootering for children and youth is more than fun: exploration of a feasible approach to improve function and fitness. Pediatr Phys Ther. 2021;33(4):218–225. doi: 10.1097/PEP.0000000000000829
- Korshunov SD, Davletyarova KV, Kapilevich LV. Biomechanical principles physical rehabilitation of children with cerebral palsy. Bulletin Siberian Med. 2016;15(3):55–62. (In Russ). doi: 10.20538/1682-0363-2016-3-55-62
- Klotz MC, Kost L, Braatz F, et al. Motion capture of the upper extremity during activities of daily living in patients with spastic hemiplegic cerebral palsy. Gait Posture. 2013;38(1):148–152. doi: 10.1016/j.gaitpost.2012.11.005
- Wood KC, Lathan CE, Kaufman KR. Feasibility of gestural feedback treatment for upper extremity movement in children with cerebral palsy. IEEE Trans Neural Syst Rehabil Eng. 2013;21(2): 300–305. doi: 10.1109/TNSRE.2012.2227804
- Sohn WJ, Sipahi R, TD, Sternad D. Portable motion-analysis device for upper-limb research, assessment, and rehabilitation in non-laboratory settings. IEEE J Transl Eng Health Med. 2019;7:2800314. doi: 10.1109/JTEHM.2019.2953257
- Haberfehlner H, Goudriaan M, Bonouvrié LA, et al. Instrumented assessment of motor function in dyskinetic cerebral palsy: a systematic review. J Neuroeng Rehabil. 2020;17(1):39. doi: 10.1186/s12984-020-00658-6
- Karjakin NN, Belova AN, Sushin VO, et al. Potential benefits and limitations of robotic exoskeleton usage in patients with spinal cord injury: a review. Bulletin Rehabilitation Med. 2020;96(2):68–78. (In Russ). doi: 10.38025/2078-1962-2020-96-2-68-78
- Coca-Tanya M, Cuesta-Gómez A, Molina-Rueda F, Carratalá-Tejada M. Gait pattern in people with multiple sclerosis: a systematic review. Diagnostics (Basel). 2021;11(4):584. doi: 10.3390/diagnostics11040584
- Shanahan CJ, Boonstra FM, Lizama LE, et al. Technologies for advanced gait and balance assessments in people with multiple sclerosis. Front Neurol. 2018;8:708. doi: 10.3389/fneur.2017.00708
Supplementary files
