«Длинный COVID»: современное состояние проблемы. Обзор зарубежных научно-медицинских публикаций
- Авторы: Щербак С.Г.1,2, Вологжанин Д.А.1,2, Камилова Т.А.1, Голота А.С.1, Макаренко С.В.1,2
-
Учреждения:
- Городская больница № 40 Курортного административного района
- Санкт-Петербургский государственный университет
- Выпуск: Том 5, № 1 (2023)
- Страницы: 52-79
- Раздел: НАУЧНЫЙ ОБЗОР
- URL: https://journal-vniispk.ru/2658-6843/article/view/132845
- DOI: https://doi.org/10.36425/rehab121733
- ID: 132845
Цитировать
Полный текст
Аннотация
Не все пациенты, выжившие после COVID-19, полностью выздоравливают: некоторые испытывают разнообразные стойкие симптомы, которые со временем усиливаются или ослабевают. По мере развития пандемии COVID-19 число людей с длительными симптомами быстро растёт, что увеличивает нагрузку на здравоохранение и общество.
Распространённость последствий COVID-19 существенно различается между исследованиями: в некоторых сообщается, что более чем у половины госпитализированных пациентов симптомы сохраняются не менее 6 месяцев после выздоровления от острой инфекции SARS-CoV-2, а у некоторых ― более 12 месяцев. Общая распространённость остаточных симптомов у пациентов, инфицированных SARS-CoV-2, в настоящее время оценивается в 10–30%.
Этот многофакторный клинический синдром обычно называют синдромом после острого COVID (post-acute COVID syndrome), или «длинным COVID» (long COVID), и характеризуется он множеством изнурительных симптомов, включая утомляемость, затуманенность сознания, ортостатическую гипотензию с тахикардией и постнагрузочное недомогание. Многие наблюдения за состоянием после COVID-19, включая изменения в иммунной, сердечно-сосудистой, желудочно-кишечной, нервной и вегетативной системах, совпадают с симптомами, описанными у пациентов с миалгическим энцефалитом / синдромом хронической усталости. Для подтверждения диагноза, выявления механизмов пост-COVID-ассоциированного миалгического энцефалита / синдрома хронической усталости и разработки мер профилактики и лечения необходим всесторонний лонгитюдный мониторинг симптомов. Отсутствие в настоящее время эффективного лечения отражает неясные причины состояний после COVID-19, на которые нельзя должным образом воздействовать, пока не будет установлен механизм.
Мультисистемные аспекты «длинного COVID» остаются плохо изученными. Пандемия COVID-19 обнажила значительный пробел в знаниях о последствиях инфекционных заболеваний, а также необходимость единой номенклатуры и классификации пост-COVID состояний, диагностических критериев и надёжных оценок этих заболеваний. Распутывание сложной биологии синдрома после острого COVID опирается на идентификацию биомаркеров в образцах плазмы и тканей, взятых у лиц, инфицированных SARS-CoV-2, которые позволяют классифицировать фенотипы пациентов, у которых развился «длинный COVID».
Для полноценного лечения пациентов с пост-COVID синдромом необходимы мультидисциплинарная терапия и реабилитация. Знание физиологических механизмов, лежащих в основе долгосрочных клинических проявлений COVID-19 и состояния после COVID-19, жизненно важно для разработки соответствующей эффективной терапии.
Полный текст
Открыть статью на сайте журналаОб авторах
Сергей Григорьевич Щербак
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-код: 1537-9822
д.м.н., профессор
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-ПетербургДмитрий Александрович Вологжанин
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302
д.м.н.
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-ПетербургТатьяна Аскаровна Камилова
Городская больница № 40 Курортного административного района
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404
к.б.н.
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. БАлександр Сергеевич Голота
Городская больница № 40 Курортного административного района
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870
к.м.н., доцент
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. БСтанислав Вячеславович Макаренко
Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет
Автор, ответственный за переписку.
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-код: 8114-3984
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург
Список литературы
- Huang Y., Pinto M.D., Borelli J.L., et al. COVID symptoms, symptom clusters, and predictors for becoming a long-hauler: looking for clarity in the haze of the pandemic // Clin Nurs Res. 2022. Vol. 31, N 8. P. 1390–1398. doi: 10.1177/10547738221125632
- Centers for Disease Control and Prevention. Long COVID or post-COVID conditions. Updated May 5, 2022. Режим доступа: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html. Дата обращения: 15.12.2022.
- Soriano J.B., Murthy S., Marshall J.C., et al.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus // Lancet Infect Dis. 2022. Vol. 22, N 4. P. e102–e107. doi: 10.1016/S1473-3099(21)00703-9
- World Health Organization. A clinical case definition of post COVID-19 condition by Delphi consensus. October 6, 2021. Режим доступа: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1. Дата обращения: 15.12.2022.
- National Institute for Health and Care Excellence Royal College of General Practitioners, and Scottish Intercolleciate Guidelines Network COVID-19 rapid guideline: managing the long-term effects of COVID-19. Режим доступа: https://www.nice.org.uk/guidance/NG188. Дата обращения: 15.12.2022.
- Venkatesan P. NICE guideline on long COVID // Lancet Respir Med. 2021. Vol. 9, N 2. P. 129. doi: 10.1016/S2213-2600(21)00031-X
- Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19 // Nature. 2021. Vol. 594, N 7862. P. 259–264. doi: 10.1038/s41586-021-03553-9
- Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact // E Clin Med. 2021. Vol. 38. P. 101019. doi: 10.1016/j.eclinm.2021.101019
- Gluckman T.J., Bhave N.M., Allen L.A., et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee // J Am Coll Cardiol. 2022. Vol. 79, N 17. P. 1717–1756. doi: 10.1016/j.jacc.2022.02.003
- Whitaker M., Elliott J., Chadeau-Hyam M., et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England // Nature Commun. 2022. Vol. 13, № 1. Р. 1957. doi: 10.1038/s41467-022-29521-z
- Chand S., Kapoor S., Naqvi A., et al. Long-term follow up of renal and other acute organ failure in survivors of critical illness due to Covid-19 // J Intensive Care Med. 2022. Vol. 37, N 6. P. 736–742. doi: 10.1177/08850666211062582
- Sierpina V.S., Seashore J., Kamprath S. Kusm-W Medical Practice Association. Post-Covid Syndrome. In: Conn’s Current Therapy 2022. Ed. by R.D. Kellerman, D. Rakel. Elsevier Health Sciences, 2021. P. 644–650.
- Blomberg B., Mohn K.G., Brokstad K.A., et al.; Bergen COVID-19 Research Group. Long COVID in a prospective cohort of home-isolated patients // Nat Med. 2021. Vol. 27, N 9. P. 1607–1613. doi: 10.1038/s41591-021-01433-3
- Estiri H., Strasser Z.H., Brat G.A., et al.; Consortium for Characterization of COVID-19 by EHR (4CE). Evolving phenotypes of non-hospitalized patients that indicate long COVID // BMC Med. 2021. Vol. 19, N 1. P. 249. doi: 10.1186/s12916-021-02115-0
- Søraas A., Kalleberg K.T., Dahl J.A., et al. Persisting symptoms three to eight months after non-hospitalized COVID-19, a prospective cohort study // PLoS ONE. 2021. Vol. 16, N 8. P. e0256142. doi: 10.1371/journal.pone.0256142
- Taquet M., Dercon Q., Luciano S., et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19 // PLoS Med. 2021. Vol. 18, N 9. P. e1003773. doi: 10.1371/journal.pmed.1003773
- Arostegui D., Castro K., Schwarz S., et al. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection // JPGN Reports. 2022. Vol. 3, N 1. P. e152. doi: 10.1097/PG9.0000000000000152
- Cheung C.C., Goh D., Lim X., et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19 // Gut. 2022. Vol. 71, N 1. P. 226–229. doi: 10.1136/gutjnl-2021-324280
- Fernández-Castañeda A., Lu P., Geraghty A.C., et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation // Cell. 2022. Vol. 185, N 14. P. 2452–2468.e16. doi: 10.1016/j.cell.2022.06.008
- Gaebler C., Wang Z., Lorenzi J.C., et al. Evolution of antibody immunity to SARS-CoV-2 // Nature. 2021. Vol. 591, N 7851. P. 639–644. doi: 10.1038/s41586-021-03207-w
- Mehandru S., Merad M. Pathological sequelae of long-haul COVID // Nat Immunol. 2022. Vol. 23, N 2. P. 194–202. doi: 10.1038/s41590-021-01104-y
- Rodriguez-Sanchez I., Rodriguez-Mañas L., Laosa O., et al. Long COVID-19: the need for an interdisciplinary approach // Clin Geriatr Med. 2022. Vol. 38, N 3. P. 533–544. doi: 10.1016/j.cger.2022.03.005
- Su Y., Yuan D., Chen D.G., et al. Multiple early factors anticipate post-acute COVID-19 sequelae // Cell. 2022. Vol. 185, N 5. P. 881–895.e20. doi: 10.1016/j.cell.2022.01.014
- Swank Z., Senussi Y., Manickas-Hill Z., et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae // Clin Infect Dis. 2022. P. ciac722. doi: 10.1093/cid/ciac722
- Peluso M.J., Deeks S.G. Early clues regarding the pathogenesis of long-COVID // Trends Immunol. 2022. Vol. 43, N 4. P. 268–270. doi: 10.1016/j.it.2022.02.008
- Munblit D., Buonsenso D., Sigfrid L., et al. Post-COVID-19 condition in children: a COS is urgently needed // Lancet Respir Med. 2022. Vol. 10, N 7. P. 628–629. doi: 10.1016/S2213-2600(22)00211-9
- Munblit D., Nicholson T., Akrami A., et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: an international Delphi consensus study // Lancet Respir Med. 2022. Vol. 10, N 7. P. 715–724. doi: 10.1016/S2213-2600(22)00169-2.
- Frontera J.A., Simon N.M. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19 // JAMA Psychiatry. 2022. Vol. 79, N 8. P. 811–817. doi: 10.1001/jamapsychiatry.2022.1616
- Reese J.T., Blau H., Casiraghi E., et al.; N3C Consortium, and RECOVER Consortiumv. Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes // eBioMedicine. 2023. N 87. P. 104413. doi: 10.1016/j.ebiom.2022.104413
- Blomberg B., Cox R.J., Langeland N. Long COVID: A growing problem in need of intervention // Cell Rep Med. 2022. Vol. 3, N 3. P. 100552. doi: 10.1016/j.xcrm.2022.100552
- Lopez-Leon S., Wegman-Ostrosky T., Del Valle N., et al. Long-COVID in children and adolescents: a systematic review and meta-analyses // Sci Rep. 2022. Vol. 12, N 1. P. 9950. doi: 10.1038/s41598-022-13495-5
- Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID // Nat Med. 2021. Vol. 27, N 4. P. 626–631. doi: 10.1038/s41591-021-01292-y
- Tenforde М., Kim S.S., Lindsell C.J., et al.; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network--United States // Morb Mortal Wkly Rep. 2020. Vol. 69, N 30. P. 993–998. doi: 10.15585/mmwr.mm6930e1
- Lambert N., Corps S., El-Azab S.A., et al. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection // J Clin Nurs. 2022. Vol. 10.1111/jocn.16541. doi: 10.1111/jocn.16541
- Huang C., Huang L., Wang Y., et al. 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study // Lancet. 2021. Vol. 397, N 10270. P. 220–232. doi: 10.1016/S0140-6736(20)32656-8
- World Health Organization. In the wake of the pandemic: preparing for Long COVID. Режим доступа: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-COVID-19/publications-and-technical-guidance/2021/in-the-wake-of-the-pandemic-preparing-for-long-COVID-2021. Дата обращения: 15.12.2022.
- Sykes D.L., Holdsworth L., Jawad N., et al. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? // Lung. 2021. Vol. 199, N 2. P. 113–119. doi: 10.1007/s00408-021-00423-z
- Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers // J Nurse Pract. 2021. Vol. 17, N 8. P. 946–949. doi: 10.1016/j.nurpra.2021.05.003
- Rogers J.P., Chesney E., Oliver D., et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic // Lancet Psychiat. 2020. Vol. 7, N 7. P. 611–627. doi: 10.1016/S2215-0366(20)30203-0
- Lam M.H., Wing Y.K., Yu M.W., et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up // Arch Intern Med. 2009. Vol. 169, N 22. P. 2142–2147. doi: 10.1001/archinternmed.2009.384
- Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study // BMC Neurol. 2011. N 11. P. 37. doi: 10.1186/1471-2377-11-37
- Bergwerk M., Gonen T., Lustig Y., et al. Covid-19 breakthrough infections in vaccinated health care workers // N Engl J Med. 2021. Vol. 385, N 16. P. 1474–1484. doi: 10.1056/NEJMoa2109072
- Antonelli M., Penfold R.S., Merino J., et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study // Lancet Infect Dis. 2022. Vol. 22, N 1. P. 43–55. doi: 10.1016/S1473-3099(21)00460-6
- Taquet M., Dercon Q., Harrison P.J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections // Brain Behav Immun. 2022. N 103. P. 154–162. doi: 10.1016/j.bbi.2022.04.013
- Al-Aly Z., Bowe B., Xie Y. Long Covid after Breakthrough COVID-19: the post-acute sequelae of breakthrough COVID-19 // Nat Med. 2022. Vol. 28, N 7. P. 1461–1467. doi: 10.1038/s41591-022-01840-0
- Malik P., Patel K., Pinto C., et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)--A systematic review and meta-analysis // J Med Virol. 2022. Vol. 94, N 1. P. 253–262. doi: 10.1002/jmv.27309
- Peghin M., Palese A., Venturini M., et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients // Clin Microbiol Infect. 2021. Vol. 27, N 10. P. 1507–1513. doi: 10.1016/j.cmi.2021.05.033
- Mandal S., Barnett J., Brill S.E., et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19 // Thorax. 2021. Vol. 76, N 4. P. 396–398. doi: 10.1136/thoraxjnl-2020-215818
- Sigfrid L., Drake T.M., Pauley E., et al. Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol // Lancet Reg Health Eur. 2021. N 8. P. 100186. doi: 10.1016/j.lanepe.2021.100186
- Patel P., De Cuir J., Abrams J., et al. Clinical characteristics of multisystem inflammatory syndrome in adults: a systematic review // JAMA Netw Open. 2021. Vol. 4, N 9. P. e2126456. doi: 10.1001/jamanetworkopen.2021.26456
- Mazza M.G., Palladini M., De Lorenzo R., et al; COVID-19 BioB Outpatient Clinic Study group. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up // Brain Behav Immun. 2021. N 94. P. 138–147. doi: 10.1016/j.bbi.2021.02.021
- Ladds E., Rushforth A., Wieringa S., et al. Persistent symptoms after Covid-19: qualitative study of 114 “long Covid” patients and draft quality principles for services // BMC Health Serv Res. 2020. Vol. 20, N 1. P. 1144. doi: 10.1186/s12913-020-06001-y
- Sukocheva O.A., Maksoud R., Beeraka N.M., et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndromeб// J Adv Res. 2022. N 40. P. 179–196. doi: 10.1016/j.jare.2021.11.013
- Leviner S. Post-sepsis syndrome // Crit Care Nurs Q. 2021. Vol. 44, N 2. P. 182–186. doi: 10.1097/CNQ.0000000000000352
- Morin L., Savale L., Pham T., et al. Writing Committee for the COMEBAC Study Group. Four-month clinical status of a cohort of patients after hospitalization for COVID-19 // JAMA. 2021. Vol. 325, N 15. P. 1525–1534. doi: 10.1001/jama.2021.3331
- Komaroff A.L., Lipkin W.I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome // Trends Mol Med. 2021. Vol. 27, N 9. P. 895–906. doi: 10.1016/j.molmed.2021.06.002
- Wong T.L., Weitzer D.J. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)--a systemic review and comparison of clinical presentation and symptomatology // Medicina. 2021. Vol. 57, N 5. P. 418. doi: 10.3390/medicina57050418
- Li P., Zhao W., Kaatz S., et al. Factors associated with risk of postdischarge thrombosis in patients with COVID-19 // JAMA Netw Open. 2021. Vol. 4, N 11. P. e2135397. doi: 10.1001/jamanetworkopen.2021.35397
- Choutka J., Jansari V., Hornig M., Iwasaki A. Unexplained post-acute infection syndromes // Nat Med. 2022. Vol. 28, N 5. P. 911–923. doi: 10.1038/s41591-022-01810-6
- Zuin M., Engelen M.M., Barco S., et al. Incidence of venous thromboembolic events in COVID-19 patients after hospital discharge: A systematic review and meta-analysis // Thromb Res. 2022. N 209. P. 94–98. doi: 10.1016/j.thromres.2021.11.029
- Kastenhuber E.R., Mercadante M., Nilsson-Payant B., et al. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry // Elife. 2022. N 11. P. e77444. doi: 10.7554/eLife.77444
- Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19 // Nat Med. 2022. Vol. 28, N 3. P. 583–590. doi: 10.1038/s41591-022-01689-3
- Calabrese L.H., Winthrop K., Strand V., et al. Type I interferon, anti-interferon antibodies, and COVID-19 // Lancet Rheumatol. 2021. Vol. 3, N 4. P. e246–e247. doi: 10.1016/S2665-9913(21)00034-5
- Cervia C., Zurbuchen Y., Taeschler P., et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome // Nat Commun. 2022. Vol. 13, N 1. P. 446. doi: 10.1038/s41467-021-27797-1
- Liu Q., Mak J.W., Su Q., et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome // Gut. 2022. Vol. 71, N 3. P. 544–552. doi: 10.1136/gutjnl-2021-325989
- Stein S., Ramelli S., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, N 7941. P. 758–763. doi: 10.1038/s41586-022-05542-y
- Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection // J Infect Dis. 2021. Vol. 224, N 11. P. 1839–1848. doi: 10.1093/infdis/jiab490
- Phetsouphanh C., Darley D.R., Wilson D.B., et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat Immunol. 2022. Vol. 23, N 2. P. 210–216. doi: 10.1038/s41590-021-01113-x
- Pretorius E., Vlok M., Venter C., et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin // Cardiovasc Diabetol. 2021. Vol. 20, N 1. P. 172. doi: 10.1186/s12933-021-01359-7
- Seeßle J., Waterboer T., Hippchen T., et al. Persistent symptoms in adult patients 1 year after Coronavirus Disease 2019 (COVID-19): a prospective cohort study // Clin Infect Dis. 2022. Vol. 74, N 7. P. 1191–1198. doi: 10.1093/cid/ciab611
- Ramakrishnan R.K., Kashour T., Hamid Q., et al. Unraveling the mystery surrounding post-acute sequelae of COVID-19 // Front Immunol. 2021. N 12. P. 686029. doi: 10.3389/fimmu.2021.686029
- Yonker L.M., Gilboa T., Ogata A.F., et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier // J Clin Invest. 2021. Vol. 131, N 14. P. e149633. doi: 10.1172/JCI149633
- Natarajan A., Zlitni S., Brooks E.F., et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection // Med (N Y). 2022. Vol. 3, N 6. P. 371–387.e9. doi: 10.1016/j.medj.2022.04.001
- Troyer Z., Alhusaini N., Tabler C.O., et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies // J Extracell Vesicles. 2021. Vol. 10, N 8. P. e12112. doi: 10.1002/jev2.12112
- Cevik M., Tate M., Lloydet O., et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis // Lancet Microbe. 2021. Vol. 2, N 1. P. e13–e22. doi: 10.1016/S2666-5247(20)30172-5
- Huang J., Zheng L., Li Z., et al. Kinetics of SARS-CoV-2 positivity of infected and recovered patients from a single center // Sci Rep. 2020. Vol. 10. P. 18629. doi: 10.1038/s41598-020-75629-x
- Yin Y., Liu X.Z., He X., Zhou L.Q. Exogenous coronavirus interacts with endogenous retrotransposon in human cells // Front Cell Infect Microbiol. 2021. N 11. P. 609160. doi: 10.3389/fcimb.2021.609160
- WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Режим доступа: https://covid19.who.int/. Дата обращения: 15.12.2022.
- Pfeuffer S., Pawlowski M., Joos G.S., et al. Autoimmunity complicating SARS-CoV-2 infection in selective IgA-deficiency // Neurol Neuroimmunol Neuroinflamm. 2020. Vol. 7, N 6. P. e881. doi: 10.1212/NXI.0000000000000881
- Zhang L., Richards A., Barrasa I.M., et al. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues // Proc Natl Acad Sci USA. 2021. Vol. 118, N 21. P. e2105968118. doi: 10.1073/pnas.2105968118
- Wang E.Y., Mao T., Klein J., et al. Diverse functional autoantibodies in patients with COVID-19 // Nature. 2021. Vol. 595, N 7866. P. 283–288. doi: 10.1038/s41586-021-03631-y
- Zuniga M., Gomes C., Carsons S.E., et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients // Eur Respir J. 2021. Vol. 58, N 4. P. 2100918. doi: 10.1183/13993003.00918-2021
- Combes A.J., Courau T., Kuhn N.F., et al. Global absence and targeting of protective immune states in severe COVID-19 // Nature. 2021. Vol. 591, N 7848. P. 124–130. doi: 10.1038/s41586-021-03234-7
- Wallukat G., Hohberger B., Wenzel K., et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms // J Transl Autoimmun. 2021. N 4. P. 100100. doi: 10.1016/j.jtauto.2021.100100
- Jonigk D., Werlein C., Lee P.D., et al. Pulmonary and systemic pathology in COVID-19 // Dtsch Arztebl Int. 2022. Vol. 119, N 25. P. 429–435. doi: 10.3238/arztebl.m2022.0231
- Xie Y., Choi T., Al-Aly Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19 // medRxiv. 2022. doi: 10.1101/2022.11.03.22281783
- Boglione L., Meli G., Poletti F., et al. Risk factors and incidence of long-COVID syndrome in hospitalized patients: does remdesivir have a protective effect? // QJM. 2022. Vol. 114, N 12. P. 865–871. doi: 10.1093/qjmed/hcab297
- Kedor C., Freitag H., Meyer-Arndt L., et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity // Nat Commun. 2022. Vol. 13, N 1. P. 5104. doi: 10.1038/s41467-022-32507-6
- Bellone M., Calvisi S.L. ACE polymorphisms and COVID-19-related mortality in Europe // J Mol Med (Berl). 2020. Vol. 98, N 11. P. 1505–1509. doi: 10.1007/s00109-020-01981-0
- Lv Y., Zhang T., Cai J., et al. Bioinformatics and systems biology approach to identify the pathogenetic link of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome // Front Immunol. 2022. N 13. P. 952987. doi: 10.3389/fimmu.2022.952987
- González-Hermosillo J.A., Martínez-López J.P., Carrillo-Lampón S.A., et al. Post-acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: a 6-month survey in a Mexican cohort // Brain Sci. 2021. Vol. 11, N 6. P. 760. doi: 10.3390/brainsci11060760
- Jason L.A., Islam M.F., Conroy K., et al. COVID-19 symptoms over time: comparing long-haulers to ME/CFS // Fatigue: Biomed Health Behav. 2021. Vol. 9, N 2. P. 59–68. doi: 10.1080/21641846.2021.1922140
- Wostyn P. COVID-19 and chronic fatigue syndrome: is the worst yet to come? // Med Hypotheses. 2021. N 146. P. 110469. doi: 10.1016/j.mehy.2020.110469
- Yang C.P., Chang C.M., Yang C.C., et al. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19 // Brain Behav Immun. 2022. N 103. P. 19–27. doi: 10.1016/j.bbi.2022.04.001
- Andrade S.B., Siqueira S., de Assis Soares W.R., et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms // Viruses. 2021. Vol. 13, N 4. P. 700. doi: 10.3390/v13040700
- Walsh-Messinger J., Manis H., Vrabec A., et al. The kids are not alright: a preliminary report of post-COVID syndrome in university students // J Am Coll Health. 2021. P. 1–7. doi: 10.1080/07448481.2021.1927053
- Hegazy M.A., Lithy R.M., Abdel-Hamid H.M., et al. COVID-19 disease outcomes: does gastrointestinal burden play a role? // Clin Exp Gastroenterol. 2021. N 14. P. 199–207. doi: 10.2147/CEG.S297428
- Groff A., Kavanaugh M., Ramgobin D., et al. Gastrointestinal manifestations of COVID-19: a review of what we know // Ochsner J. 2021. Vol. 21, N 2. P. 177–180. doi: 10.31486/toj.20.0086
- Yeoh Y.K., Zuo T., Lui G.C., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19 // Gut. 2021. Vol. 70, N 4. P. 698–706. doi: 10.1136/gutjnl-2020-323020
- Huang Q., Wu X., Zheng X., et al. Targeting inflammation and cytokine storm in COVID-19 // Pharmacol Res. 2020. N 159. P. 105051. doi: 10.1016/j.phrs.2020.105051
- Sfera A., Osorio C., Del Campo C.M., et al. Endothelial senescence and chronic fatigue syndrome, a COVID-19 based hypothesis // Front Cell Neurosci. 2021. N 15. P. 673217. doi: 10.3389/fncel.2021.673217
- Sathyamurthy P., Madhavan S., Pandurangan V. Prevalence, pattern and functional outcome of post COVID-19 syndrome in older adults // Cureus. 2021. Vol. 13, N 8. P. e17189. doi: 10.7759/cureus.17189
- Tosato M., Carfì A., Martis I., et al. Prevalence and predictors of persistence of COVID-19 symptoms in older adults: a single-center study // J Am Med Dir Assoc. 2021. Vol. 22, N 9. P. 1840–1844. doi: 10.1016/j.jamda.2021.07.003
- Groff D., Sun A., Ssentongo A.E., et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review // JAMA Netw Open. 2021. Vol. 4, N 10. P. e2128568. doi: 10.1001/jamanetworkopen.2021.28568
- Taquet M., Sillett R., Zhu L., et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients // Lancet Psychiatry. 2022. Vol. 9, N 10. P. 815–827. doi: 10.1016/S2215-0366(22)00260-7
- Antonelli M., Pujol J.C., Spector T.D., et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2 // Lancet. 2022. Vol. 399, N 10343. P. 2263–2264. doi: 10.1016/S0140-6736(22)00941-2
- Twohig K.A., Nyberg T., Zaidi A., et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study // Lancet Infect Dis. 2022. Vol. 22, N 1. P. 35–42. doi: 10.1016/S1473-3099(21)00475-8
- Nyberg T., Ferguson N.M., Nash S.G., et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study // Lancet. 2022. Vol. 399, N 10332. P. 1303–1312. doi: 10.1016/S0140-6736(22)00462-7
- Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. N 12. P. 698169. doi: 10.3389/fmicb.2021.698169
- Khatiwada S., Subedi A. Lung microbiome and coronavirus disease 2019 (COVID-19): possible link and implications // Hum Microb J. 2020. N 17. P. 100073. doi: 10.1016/j.humic.2020.100073
- Marouf N., Cai W., Said K.N., et al. Association between periodontitis and severity of COVID-19 infection: a case–control study // J Clin Periodontol. 2021. Vol. 48, N 4. P. 483–491. doi: 10.1111/jcpe.13435
- Shen Z., Xiao Y., Kang L., et al. Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019 // Clin Infect Dis. 2020. Vol. 71, N 15. P. 713–720. doi: 10.1093/cid/ciaa203
- Zuo T., Zhang F., Lui G.C., et al. Alterations in gut microbiota of patients With COVID-19 during time of hospitalization // Gastroenterology. 2020. Vol. 159, N 3. P. 944–955.e8. doi: 10.1053/j.gastro.2020.05.048
- Kitsou K., Kotanidou A., Paraskevis D., et al. Upregulation of human endogenous retroviruses in bronchoalveolar lavage fluid of COVID-19 patients // Microbiol Spectr. 2021. Vol. 9, N 2. P. e0126021. doi: 10.1128/Spectrum.01260-21
- Dioh W., Chabane M., Tourette C., et al. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): a structured summary of a study protocol for a randomised controlled trial // Trials. 2021. Vol. 22, N 1. P. 42. doi: 10.1186/s13063-020-04998-5
- Ni W., Yang X., Yang D., et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19 // Crit Care. 2020. Vol. 24, N 1. P. 422. doi: 10.1186/s13054-020-03120-0222
- Crespi B., Alcock J. Conflicts over calcium and the treatment of COVID-19 // Evol Med Public Health. 2021. Vol. 9, N 1. P. 149–156. doi: 10.1093/emph/eoaa046
- Thakur P., Shrivastava R., Shrivastava V.K. Oxytocin as a potential adjuvant against COVID-19 infection // Endocr Metab Immune Disord Drug Targets. 2021. Vol. 21, N 7. P. 1155–1162. doi: 10.2174/1871530320666200910114259
- Diep P.T., Chaudry M., Dixon A., et al. Oxytocin, the panacea for long-COVID? a review // Horm Mol Biol Clin Investig. 2022. Vol. 43, N 3. P. 363–371. doi: 10.1515/hmbci-2021-0034
- Grinevich V., Neumann I.D. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry // Mol Psychiatry. 2021. Vol. 26, N 1. P. 265–279. doi: 10.1038/s41380-020-0802-9
- Longobardo A., Montanari C., Shulman R., et al. Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome // Br J Anaesth. 2021. Vol. 126, N 1. P. e44–e46. doi: 10.1016/j.bja.2020.10.011
- Wang S.C., Wang Y.F. Cardiovascular protective properties of oxytocin against COVID-19 // Life Sci. 2021. N 270. P. 119130. doi: 10.1016/j.lfs.2021.119130
- Liu J., Liu S., Zhang Z., et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19 // Synth Syst Biotech. 2021. Vol. 6, N 3. P. 135–143. doi: 10.1016/j.synbio.2021.06.002
- Everett N.A., Turner A.J., Costa P.A., et al. The vagus nerve mediates the suppressing effects of peripherally administered oxytocin on methamphetamine self-administration and seeking in rats // Neuropsychopharmacol. 2021. Vol. 46, N 2. P. 297–304. doi: 10.1038/s41386-020-0719-7
- Azabou E., Bao G., Bounab R., et al. Vagus nerve stimulation: a potential adjunct therapy for COVID-19 // Front Med. 2021. N 8. P. 625836. doi: 10.3389/fmed.2021.625836
- Gryksa K., Neumann I.D. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system // Psychoneuroendocrinology. 2022. N 135. P. 105601. doi: 10.1016/j.psyneuen.2021.105601
- Wang S.C., Zhang F., Zhu H., et al. Potential of endogenous oxytocin in endocrine treatment and prevention of COVID-19 // Front Endocrinol (Lausanne). 2022. N 13. P. 799521. doi: 10.3389/fendo.2022.799521
- Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments // Infect Dis (Lond). 2021. Vol. 53, N 10. P. 737–754. doi: 10.1080/23744235.2021.1924397
- Le Bon S.D., Konopnicki D., Pisarski N., et al. Efficacy and safety of oral corticosteroids and olfactory training in the management of COVID-19-related loss of smell // Eur Arch Otorhinolaryngol. 2021. Vol. 278, N 8. P. 3113–3117. doi: 10.1007/s00405-020-06520-8
- Goldenberg D., Dichter M. Unravelling Long COVID. Wiley-Blackwell, 2023. 256 p.
Дополнительные файлы
