«Long COVID»: the current state of the problem. A review of foreign scientific and medical publications

Cover Page

Cite item

Full Text

Abstract

Not all the patients diagnosed with COVID-19 can completely recover; some of them experience various persistent symptoms which wax and wane. As the COVID-19 pandemic continues, the number of people with long-term symptoms is rapidly increasing, adding to the burden on the healthcare and society.

The prevalence of the COVID-19 consequences varies between studies, with some researchers reporting that more than half of hospitalized patients suffer from long-lasting symptoms for at least 6 months after the acute SARS-CoV-2 infection, and others observing such symptoms for more than 12 months. The overall prevalence of residual symptoms in patients infected with SARS-CoV-2 is currently estimated as 10–30%. This clinical syndrome is commonly referred to as post-acute COVID syndrome (PACS) or long COVID.

This multifactorial syndrome is characterised by a variety of debilitating symptoms, including fatigue, brain fog, postural hypotension with tachycardia, and post-exertional malaise. Many of the post COVID-19 condition observations, including changes in the immune, cardiovascular, gastrointestinal, nervous and autonomic systems, are shared with those for myalgic encephalitis/chronic fatigue syndrome (ME/CFS) patients. A comprehensive longitudinal symptom monitoring is required to confirm the diagnosis, uncover the mechanisms of post-COVID-19-associated ME/CFS, and develop the prevention and treatment measures. The current absence of an effective treatment reflects the unclear causes of the post COVID-19 conditions which cannot be targeted properly until the mechanism is established and confirmed.

The multisystem aspects of long COVID remain poorly understood. The COVID-19 pandemic has exposed a significant gap in the knowledge about the post-acute consequences of infectious diseases and the need for a unified nomenclature and classification, diagnostic criteria, and a reliable assessment of post-COVID conditions. Unraveling the complex biology of PACS relies on the identification of biomarkers in the plasma and tissue samples harvested from individuals infected with SARS-CoV-2 that will allow classification of the phenotypes of patients who develop PACS.

For a comprehensive treatment of patients with post-COVID syndrome, multidisciplinary therapy and rehabilitation are required. Understanding the physiological mechanisms underlying the long-term clinical manifestations of COVID-19 and the post-COVID-19 state is vital for the development of appropriate effective therapies.

About the authors

Sergey G. Sсherbak

Saint-Petersburg City Hospital № 40 of Kurortny District; Saint-Petersburg State University

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822

MD, Dr. Sci. (Med.), Professor

Russian Federation, 9B Borisova st., 197706 Saint Petersburg, Sestroretsk; Saint Petersburg

Dmitry A. Vologzhanin

Saint-Petersburg City Hospital № 40 of Kurortny District; Saint-Petersburg State University

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706 Saint Petersburg, Sestroretsk; Saint Petersburg

Tatyana A. Kamilova

Saint Petersburg City Hospital No 40

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biol.)

Russian Federation, 9B Borisova st., Sestroretsk, Saint Petersburg, 197706

Aleksandr S. Golota

Saint Petersburg City Hospital No 40

Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 9B Borisova st., Sestroretsk, Saint Petersburg, 197706

Stanislav V. Makarenko

Saint-Petersburg City Hospital № 40 of Kurortny District; Saint-Petersburg State University

Author for correspondence.
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984
Russian Federation, 9B Borisova st., 197706 Saint Petersburg, Sestroretsk; Saint Petersburg

References

  1. Huang Y, Pinto MD, Borelli JL, et al. COVID symptoms, symptom clusters, and predictors for becoming a long-hauler: looking for clarity in the haze of the pandemic. Clin Nurs Res. 2022;31(8): 1390–1398. doi: 10.1177/10547738221125632
  2. Centers for Disease Control and Prevention. Long COVID or post-COVID conditions. Updated May 5, 2022. Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html. Accessed: 15.12.2022.
  3. Soriano JB, Murthy S, Marshall JC, et al.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9
  4. World Health Organization. A clinical case definition of post COVID-19 condition by Delphi consensus. October 6, 2021. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1. Accessed: 15.12.2022.
  5. National Institute for Health and Care Excellence Royal College of General Practitioners, and Scottish Intercolleciate Guidelines Network COVID-19 rapid guideline: managing the long-term effects of COVID-19. Available from: https://www.nice.org.uk/guidance/NG188. Accessed: 15.12.2022.
  6. Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021;9(2):129. doi: 10.1016/S2213-2600(21)00031-X
  7. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–264. doi: 10.1038/s41586-021-03553-9
  8. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. Clin Med. 2021;38:101019. doi: 10.1016/j.eclinm.2021.101019
  9. Gluckman TJ, Bhave NM, Allen LA, et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2022;79(17):1717–1756. doi: 10.1016/j.jacc.2022.02.003
  10. Whitaker M, Elliott J, Chadeau-Hyam M, et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nature Commun. 2022;13(1):1957. doi: 10.1038/s41467-022-29521-z
  11. Chand S, Kapoor S, Naqvi A, et al. Long-term follow up of renal and other acute organ failure in survivors of critical illness due to Covid-19. J Intensive Care Med. 2022;37(6):736–742. doi: 10.1177/08850666211062582
  12. Sierpina VS, Seashore J, Kamprath S. Kusm-W Medical Practice Association. Post-Covid Syndrome. In: Conn’s Current Therapy 2022. Ed. by R.D. Kellerman, D. Rakel. Elsevier Health Sciences; 2021. P. 644–650.
  13. Blomberg B, Mohn KG, Brokstad KA, et al.; Bergen COVID-19 Research Group. Long COVID in a prospective cohort of home-isolated patients. Nat Med. 2021;27(9):1607–1613. doi: 10.1038/s41591-021-01433-3
  14. Estiri H, Strasser ZH, Brat GA, et al.; Consortium for Characterization of COVID-19 by EHR (4CE). Evolving phenotypes of non-hospitalized patients that indicate long COVID. BMC Med. 2021;19(1):249. doi: 10.1186/s12916-021-02115-0
  15. Søraas A, Kalleberg KT, Dahl JA, et al. Persisting symptoms three to eight months after non-hospitalized COVID-19, a prospective cohort study. PLoS ONE. 2021;16(8):e0256142. doi: 10.1371/journal.pone.0256142
  16. Taquet M, Dercon Q, Luciano S, et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021;18(9):e1003773. doi: 10.1371/journal.pmed.1003773
  17. Arostegui D, Castro K, Schwarz S, et al. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection. JPGN Reports. 2022;3(1):e152. doi: 10.1097/PG9.0000000000000152
  18. Cheung CC, Goh D, Lim X, et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut. 2022;71(1):226–229. doi: 10.1136/gutjnl-2021-324280
  19. Fernández-Castañeda A, Lu P, Geraghty AC, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022;185(14):2452–2468.e16. doi: 10.1016/j.cell.2022.06.008
  20. Gaebler C, Wang Z, Lorenzi JC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature. 2021;591(7851):639–644. doi: 10.1038/s41586-021-03207-w
  21. Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y
  22. Rodriguez-Sanchez I, Rodriguez-Mañas L, Laosa O, et al. Long COVID-19: the need for an interdisciplinary approach. Clin Geriatr Med. 2022;38(3):533–544. doi: 10.1016/j.cger.2022.03.005
  23. Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881–895.e20. doi: 10.1016/j.cell.2022.01.014
  24. Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae. Clin Infect Dis. 2022;ciac722. doi: 10.1093/cid/ciac722
  25. Peluso MJ, Deeks SG. Early clues regarding the pathogenesis of long-COVID. Trends Immunol. 2022;43(4):268–270. doi: 10.1016/j.it.2022.02.008
  26. Munblit D, Buonsenso D, Sigfrid L, et al. Post-COVID-19 condition in children: a COS is urgently needed. Lancet Respir Med. 2022;10(7): 628–629. doi: 10.1016/S2213-2600(22)00211-9
  27. Munblit D, Nicholson T, Akrami A, et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: an international Delphi consensus study. Lancet Respir Med. 2022;10(7):715–724. doi: 10.1016/S2213-2600(22)00169-2.
  28. Frontera JA, Simon NM. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19. JAMA Psychiatry. 2022;79(8):811–817. doi: 10.1001/jamapsychiatry.2022.1616
  29. Reese JT, Blau H, Casiraghi E, et al.; N3C Consortium, and RECOVER Consortiumv. Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes. eBioMedicine. 2023;(87):104413. doi: 10.1016/j.ebiom.2022.104413
  30. Blomberg B, Cox RJ, Langeland N. Long COVID: A growing problem in need of intervention. Cell Rep Med. 2022;3(3):100552. doi: 10.1016/j.xcrm.2022.100552
  31. Lopez-Leon S, Wegman-Ostrosky T, Del Valle N, et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep. 2022;12(1):9950. doi: 10.1038/s41598-022-13495-5
  32. Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–631. doi: 10.1038/s41591-021-01292-y
  33. Tenforde М, Kim SS, Lindsell CJ, et al.; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network--United States. Morb Mortal Wkly Rep. 2020;69(30): 993–998. doi: 10.15585/mmwr.mm6930e1
  34. Lambert N, Corps S, El-Azab SA, et al. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection. J Clin Nurs. 2022;10.1111/jocn.16541. doi: 10.1111/jocn.16541
  35. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/S0140-6736(20)32656-8
  36. World Health Organization. In the wake of the pandemic: preparing for Long COVID. Available from: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-COVID-19/publications-and-technical-guidance/2021/in-the-wake-of-the-pandemic-preparing-for-long-COVID-2021. Accessed: 15.12.2022.
  37. Sykes DL, Holdsworth L, Jawad N, et al. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? Lung. 2021;199(2):113–119. doi: 10.1007/s00408-021-00423-z
  38. Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers. J Nurse Pract. 2021;17(8):946–949. doi: 10.1016/j.nurpra.2021.05.003
  39. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiat. 2020;7(7):611–627. doi: 10.1016/S2215-0366(20)30203-0
  40. Lam MH, Wing YK, Yu MW, et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med. 2009;169(22):2142–2147. doi: 10.1001/archinternmed.2009.384
  41. Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011;(11):37. doi: 10.1186/1471-2377-11-37
  42. Bergwerk M, Gonen T, Lustig Y, et al. Covid-19 breakthrough infections in vaccinated health care workers. N Engl J Med. 2021;385(16):1474–1484. doi: 10.1056/NEJMoa2109072
  43. Antonelli M, Penfold RS, Merino J, et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Lancet Infect Dis. 2022;22(1):43–55. doi: 10.1016/S1473-3099(21)00460-6
  44. Taquet M, Dercon Q, Harrison PJ. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections. Brain Behav Immun. 2022;(103): 154–162. doi: 10.1016/j.bbi.2022.04.013
  45. Al-Aly Z, Bowe B, Xie Y. Long Covid after Breakthrough COVID-19: the post-acute sequelae of breakthrough COVID-19. Nat Med. 2022;28(7):1461–1467. doi: 10.1038/s41591-022-01840-0
  46. Malik P, Patel K, Pinto C, et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-A systematic review and meta-analysis. J Med Virol. 2022;94(1):253–262. doi: 10.1002/jmv.27309
  47. Peghin M, Palese A, Venturini M, et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin Microbiol Infect. 2021;27(10):1507–1513. doi: 10.1016/j.cmi.2021.05.033
  48. Mandal S, Barnett J, Brill SE, et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021;76(4):396–398. doi: 10.1136/thoraxjnl-2020-215818
  49. Sigfrid L, Drake TM, Pauley E, et al. Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg Health Eur. 2021;(8):100186. doi: 10.1016/j.lanepe.2021.100186
  50. Patel P, DeCuir J, Abrams J, et al. Clinical characteristics of multisystem inflammatory syndrome in adults: a systematic review. JAMA Netw Open. 2021;4(9):e2126456. doi: 10.1001/jamanetworkopen.2021.26456
  51. Mazza MG, Palladini M, De Lorenzo R, et al.; COVID-19 BioB Outpatient Clinic Study group. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;(94):138–147. doi: 10.1016/j.bbi.2021.02.021
  52. Ladds E, Rushforth A, Wieringa S, et al. Persistent symptoms after Covid-19: qualitative study of 114 “long Covid” patients and draft quality principles for services. BMC Health Serv Res. 2020;20(1):1144. doi: 10.1186/s12913-020-06001-y
  53. Sukocheva OA, Maksoud R, Beeraka NM, et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res. 2022;(40):179–196. doi: 10.1016/j.jare.2021.11.013
  54. Leviner S. Post-sepsis syndrome. Crit Care Nurs Q. 2021;44(2): 182–186. doi: 10.1097/CNQ.0000000000000352
  55. Morin L, Savale L, Pham T, et al.; Writing Committee for the COMEBAC Study Group. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA. 2021;325(15): 1525–1534. doi: 10.1001/jama.2021.3331
  56. Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med. 2021;27(9):895–906. doi: 10.1016/j.molmed.2021.06.002
  57. Wong TL, Weitzer DJ. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)--a systemic review and comparison of clinical presentation and symptomatology. Medicina. 2021;57(5):418. doi: 10.3390/medicina57050418
  58. Li P, Zhao W, Kaatz S, et al. Factors associated with risk of postdischarge thrombosis in patients with COVID-19. JAMA Netw Open. 2021;4(11):e2135397. doi: 10.1001/jamanetworkopen.2021.35397
  59. Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911–923. doi: 10.1038/s41591-022-01810-6
  60. Zuin M, Engelen MM, Barco S, et al. Incidence of venous thromboembolic events in COVID-19 patients after hospital discharge: A systematic review and meta-analysis. Thromb Res. 2022;(209): 94–98. doi: 10.1016/j.thromres.2021.11.029
  61. Kastenhuber ER, Mercadante M, Nilsson-Payant B, et al. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. Elife. 2022;(11):e77444. doi: 10.7554/eLife.77444
  62. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–590. doi: 10.1038/s41591-022-01689-3
  63. Calabrese LH, Winthrop K, Strand V, et al. Type I interferon, anti-interferon antibodies, and COVID-19. Lancet Rheumatol. 2021;3(4):e246–e247. doi: 10.1016/S2665-9913(21)00034-5
  64. Cervia C, Zurbuchen Y, Taeschler P, et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome. Nat Commun. 2022;13(1):446. doi: 10.1038/s41467-021-27797-1
  65. Liu Q, Mak JW, Su Q, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71(3):544–552. doi: 10.1136/gutjnl-2021-325989
  66. Stein S, Ramelli S, Grazioli A, et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature. 2022;612(7941):758–763. doi: 10.1038/s41586-022-05542-y
  67. Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection. J Infect Dis. 2021;224(11):1839–1848. doi: 10.1093/infdis/jiab490
  68. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210–216. doi: 10.1038/s41590-021-01113-x
  69. Pretorius E, Vlok M, Venter C, et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol. 2021;20(1):172. doi: 10.1186/s12933-021-01359-7
  70. Seeßle J, Waterboer T, Hippchen T, et al. Persistent symptoms in adult patients 1 year after Coronavirus Disease 2019 (COVID-19): a prospective cohort study. Clin Infect Dis. 2022;74(7):1191–1198. doi: 10.1093/cid/ciab611
  71. Ramakrishnan RK, Kashour T, Hamid Q, et al. Unraveling the mystery surrounding post-acute sequelae of COVID-19. Front Immunol. 2021;(12):686029. doi: 10.3389/fimmu.2021.686029
  72. Yonker LM, Gilboa T, Ogata AF, et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest. 2021;131(14):e149633. doi: 10.1172/JCI149633
  73. Natarajan A, Zlitni S, Brooks EF, et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med (N Y). 2022;3(6):371–387.e9. doi: 10.1016/j.medj.2022.04.001
  74. Troyer Z, Alhusaini N, Tabler CO, et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles. 2021;10(8):e12112. doi: 10.1002/jev2.12112
  75. Cevik M, Tate M, Lloydet O, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13–e22. doi: 10.1016/S2666-5247(20)30172-5
  76. Huang J, Zheng L, Li Z, et al. Kinetics of SARS-CoV-2 positivity of infected and recovered patients from a single center. Sci Rep. 2020;10:18629. doi: 10.1038/s41598-020-75629-x
  77. Yin Y, Liu XZ, He X, Zhou LQ. Exogenous coronavirus interacts with endogenous retrotransposon in human cells. Front Cell Infect Microbiol. 2021;(11):609160. doi: 10.3389/fcimb.2021.609160
  78. WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Available from: https://covid19.who.int/. Accessed: 15.12.2022.
  79. Pfeuffer S, Pawlowski M, Joos GS, et al. Autoimmunity complicating SARS-CoV-2 infection in selective IgA-deficiency. Neurol Neuroimmunol Neuroinflamm. 2020;7(6):e881. doi: 10.1212/NXI.0000000000000881
  80. Zhang L, Richards A, Barrasa IM, et al. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proc Natl Acad Sci USA. 2021;118(21):e2105968118. doi: 10.1073/pnas.2105968118
  81. Wang EY, Mao T, Klein J, et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595(7866):283–288. doi: 10.1038/s41586-021-03631-y
  82. Zuniga M, Gomes C, Carsons SE, et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur Respir J. 2021;58(4):2100918. doi: 10.1183/13993003.00918-2021
  83. Combes AJ, Courau T, Kuhn NF, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021;591(7848):124–130. doi: 10.1038/s41586-021-03234-7
  84. Wallukat G, Hohberger B, Wenzel K, et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms. J Transl Autoimmun. 2021;(4):100100. doi: 10.1016/j.jtauto.2021.100100
  85. Jonigk D, Werlein C, Lee PD, et al. Pulmonary and systemic pathology in COVID-19. Dtsch Arztebl Int. 2022;119(25):429–435. doi: 10.3238/arztebl.m2022.0231
  86. Xie Y, Choi T, Al-Aly Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19. medRxiv. 2022. doi: 10.1101/2022.11.03.22281783
  87. Boglione L, Meli G, Poletti F, et al. Risk factors and incidence of long-COVID syndrome in hospitalized patients: does remdesivir have a protective effect? QJM. 2022;114(12):865–871. doi: 10.1093/qjmed/hcab297
  88. Kedor C, Freitag H, Meyer-Arndt L, et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat Commun. 2022;13(1):5104. doi: 10.1038/s41467-022-32507-6
  89. Bellone M, Calvisi SL. ACE polymorphisms and COVID-19-related mortality in Europe. J Mol Med (Berl). 2020;98(11):1505–1509. doi: 10.1007/s00109-020-01981-0
  90. Lv Y, Zhang T, Cai J, et al. Bioinformatics and systems biology approach to identify the pathogenetic link of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Immunol. 2022;(13):952987. doi: 10.3389/fimmu.2022.952987
  91. González-Hermosillo JA, Martínez-López JP, Carrillo-Lampón SA, et al. Post-acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: a 6-month survey in a Mexican cohort. Brain Sci. 2021;11(6):760. doi: 10.3390/brainsci11060760
  92. Jason LA, Islam MF, Conroy K, et al. COVID-19 symptoms over time: comparing long-haulers to ME/CFS. Fatigue: Biomed Health Behav. 2021;9(2):59–68. doi: 10.1080/21641846.2021.1922140
  93. Wostyn P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med Hypotheses. 2021;(146):110469. doi: 10.1016/j.mehy.2020.110469
  94. Yang CP, Chang CM, Yang CC, et al. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19. Brain Behav Immun. 2022;(103):19–27. doi: 10.1016/j.bbi.2022.04.001
  95. Andrade SB, Siqueira S, de Assis Soares WR, et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms. Viruses. 2021;13(4):700. doi: 10.3390/v13040700
  96. Walsh-Messinger J, Manis H, Vrabec A, et al. The kids are not alright: a preliminary report of post-COVID syndrome in university students. J Am Coll Health. 2021;1–7. doi: 10.1080/07448481.2021.1927053
  97. Hegazy MA, Lithy RM, Abdel-Hamid HM, et al. COVID-19 disease outcomes: does gastrointestinal burden play a role? Clin Exp Gastroenterol. 2021;(14):199–207. doi: 10.2147/CEG.S297428
  98. Groff A, Kavanaugh M, Ramgobin D, et al. Gastrointestinal manifestations of COVID-19: a review of what we know. Ochsner J. 2021;21(2):177–180. doi: 10.31486/toj.20.0086
  99. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698–706. doi: 10.1136/gutjnl-2020-323020
  100. Huang Q, Wu X, Zheng X, et al. Targeting inflammation and cytokine storm in COVID-19. Pharmacol Res. 2020;(159):105051. doi: 10.1016/j.phrs.2020.105051
  101. Sfera A, Osorio C, Del Campo CM, et al. Endothelial senescence and chronic fatigue syndrome, a COVID-19 based hypothesis. Front Cell Neurosci. 2021;(15):673217. doi: 10.3389/fncel.2021.673217
  102. Sathyamurthy P, Madhavan S, Pandurangan V. Prevalence, pattern and functional outcome of post COVID-19 syndrome in older adults. Cureus. 2021;13(8):e17189. doi: 10.7759/cureus.17189
  103. Tosato M, Carfì A, Martis I, et al. Prevalence and predictors of persistence of COVID-19 symptoms in older adults: a single-center study. J Am Med Dir Assoc. 2021;22(9):1840–1844. doi: 10.1016/j.jamda.2021.07.003
  104. Groff D, Sun A, Ssentongo AE, et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review. JAMA Netw Open. 2021;4(10):e2128568. doi: 10.1001/jamanetworkopen.2021.28568
  105. Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1284437 patients. Lancet Psychiatry. 2022;9(10):815–827. doi: 10.1016/S2215-0366(22)00260-7
  106. Antonelli M, Pujol JC, Spector TD, et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet. 2022;399(10343):2263–2264. doi: 10.1016/S0140-6736(22)00941-2
  107. Twohig KA, Nyberg T, Zaidi A, et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. 2022;22(1):35–42. doi: 10.1016/S1473-3099(21)00475-8
  108. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303–1312. doi: 10.1016/S0140-6736(22)00462-7
  109. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front Microbiol. 2021;(12):698169. doi: 10.3389/fmicb.2021.698169
  110. Khatiwada S, Subedi A. Lung microbiome and coronavirus disease 2019 (COVID-19): possible link and implications. Hum Microb J. 2020;(17):100073. doi: 10.1016/j.humic.2020.100073
  111. Marouf N, Cai W, Said KN, et al. Association between periodontitis and severity of COVID-19 infection: a case-control study. J Clin Periodontol. 2021;48(4):483–491. doi: 10.1111/jcpe.13435
  112. Shen Z, Xiao Y, Kang L, et al. Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019. Clin Infect Dis. 2020;71(15):713–720. doi: 10.1093/cid/ciaa203
  113. Zuo T, Zhang F, Lui GC, et al. Alterations in gut microbiota of patients With COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944–955.e8. doi: 10.1053/j.gastro.2020.05.048
  114. Kitsou K, Kotanidou A, Paraskevis D, et al. Upregulation of human endogenous retroviruses in bronchoalveolar lavage fluid of COVID-19 patients. Microbiol Spectr. 2021;9(2):e0126021. doi: 10.1128/Spectrum.01260-21
  115. Dioh W, Chabane M, Tourette C, et al. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): a structured summary of a study protocol for a randomised controlled trial. Trials. 2021;22(1):42. doi: 10.1186/s13063-020-04998-5
  116. Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020;24(1):422. doi: 10.1186/s13054-020-03120-0222
  117. Crespi B, Alcock J. Conflicts over calcium and the treatment of COVID-19. Evol Med Public Health. 2021;9(1):149–156. doi: 10.1093/emph/eoaa046
  118. Thakur P, Shrivastava R, Shrivastava VK. Oxytocin as a potential adjuvant against COVID-19 infection. Endocr Metab Immune Disord Drug Targets. 2021;21(7):1155–1162. doi: 10.2174/1871530320666200910114259
  119. Diep PT, Chaudry M, Dixon A, et al. Oxytocin, the panacea for long-COVID? A review. Horm Mol Biol Clin Investig. 2022;43(3): 363–371. doi: 10.1515/hmbci-2021-0034
  120. Grinevich V, Neumann ID. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry. 2021;26(1):265–279. doi: 10.1038/s41380-020-0802-9
  121. Longobardo A, Montanari C, Shulman R, et al. Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome. Br J Anaesth. 2021;126(1):e44–e46. doi: 10.1016/j.bja.2020.10.011
  122. Wang SC, Wang YF. Cardiovascular protective properties of oxytocin against COVID-19. Life Sci. 2021;(270):119130. doi: 10.1016/j.lfs.2021.119130
  123. Liu J, Liu S, Zhang Z, et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19. Synth Syst Biotech. 2021;6(3):135–143. doi: 10.1016/j.synbio.2021.06.002
  124. Everett NA, Turner AJ, Costa PA, et al. The vagus nerve mediates the suppressing effects of peripherally administered oxytocin on methamphetamine self-administration and seeking in rats. Neuropsychopharmacol. 2021;46(2):297–304. doi: 10.1038/s41386-020-0719-7
  125. Azabou E, Bao G, Bounab R, et al. Vagus nerve stimulation: a potential adjunct therapy for COVID-19. Front Med. 2021;(8): 625836. doi: 10.3389/fmed.2021.625836
  126. Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology. 2022;(135):105601. doi: 10.1016/j.psyneuen.2021.105601
  127. Wang SC, Zhang F, Zhu H, et al. Potential of endogenous oxytocin in endocrine treatment and prevention of COVID-19. Front Endocrinol (Lausanne). 2022;(13):799521. doi: 10.3389/fendo.2022.799521
  128. Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis (Lond). 2021;53(10):737–754. doi: 10.1080/23744235.2021.1924397
  129. Le Bon SD, Konopnicki D, Pisarski N, et al. Efficacy and safety of oral corticosteroids and olfactory training in the management of COVID-19-related loss of smell. Eur Arch Otorhinolaryngol. 2021;278(8):3113–3117. doi: 10.1007/s00405-020-06520-8
  130. Goldenberg D, Dichter M. Unravelling Long COVID. Wiley-Blackwell; 2023. 256 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).