«Длинный COVID»: современное состояние проблемы. Обзор зарубежных научно-медицинских публикаций

Обложка

Цитировать

Полный текст

Аннотация

Не все пациенты, выжившие после COVID-19, полностью выздоравливают: некоторые испытывают разнообразные стойкие симптомы, которые со временем усиливаются или ослабевают. По мере развития пандемии COVID-19 число людей с длительными симптомами быстро растёт, что увеличивает нагрузку на здравоохранение и общество.

Распространённость последствий COVID-19 существенно различается между исследованиями: в некоторых сообщается, что более чем у половины госпитализированных пациентов симптомы сохраняются не менее 6 месяцев после выздоровления от острой инфекции SARS-CoV-2, а у некоторых ― более 12 месяцев. Общая распространённость остаточных симптомов у пациентов, инфицированных SARS-CoV-2, в настоящее время оценивается в 10–30%.

Этот многофакторный клинический синдром обычно называют синдромом после острого COVID (post-acute COVID syndrome), или «длинным COVID» (long COVID), и характеризуется он множеством изнурительных симптомов, включая утомляемость, затуманенность сознания, ортостатическую гипотензию с тахикардией и постнагрузочное недомогание. Многие наблюдения за состоянием после COVID-19, включая изменения в иммунной, сердечно-сосудистой, желудочно-кишечной, нервной и вегетативной системах, совпадают с симптомами, описанными у пациентов с миалгическим энцефалитом / синдромом хронической усталости. Для подтверждения диагноза, выявления механизмов пост-COVID-ассоциированного миалгического энцефалита / синдрома хронической усталости и разработки мер профилактики и лечения необходим всесторонний лонгитюдный мониторинг симптомов. Отсутствие в настоящее время эффективного лечения отражает неясные причины состояний после COVID-19, на которые нельзя должным образом воздействовать, пока не будет установлен механизм.

Мультисистемные аспекты «длинного COVID» остаются плохо изученными. Пандемия COVID-19 обнажила значительный пробел в знаниях о последствиях инфекционных заболеваний, а также необходимость единой номенклатуры и классификации пост-COVID состояний, диагностических критериев и надёжных оценок этих заболеваний. Распутывание сложной биологии синдрома после острого COVID опирается на идентификацию биомаркеров в образцах плазмы и тканей, взятых у лиц, инфицированных SARS-CoV-2, которые позволяют классифицировать фенотипы пациентов, у которых развился «длинный COVID».

Для полноценного лечения пациентов с пост-COVID синдромом необходимы мультидисциплинарная терапия и реабилитация. Знание физиологических механизмов, лежащих в основе долгосрочных клинических проявлений COVID-19 и состояния после COVID-19, жизненно важно для разработки соответствующей эффективной терапии.

Об авторах

Сергей Григорьевич Щербак

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-код: 1537-9822

д.м.н., профессор

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Дмитрий Александрович Вологжанин

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302

д.м.н.

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Татьяна Аскаровна Камилова

Городская больница № 40 Курортного административного района

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-код: 2922-4404

к.б.н.

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б

Александр Сергеевич Голота

Городская больница № 40 Курортного административного района

Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870

к.м.н., доцент

Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б

Станислав Вячеславович Макаренко

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Автор, ответственный за переписку.
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-код: 8114-3984
Россия, 197706, Санкт-Петербург, Сестрорецк, ул. Борисова, д. 9, лит. Б; Санкт-Петербург

Список литературы

  1. Huang Y., Pinto M.D., Borelli J.L., et al. COVID symptoms, symptom clusters, and predictors for becoming a long-hauler: looking for clarity in the haze of the pandemic // Clin Nurs Res. 2022. Vol. 31, N 8. P. 1390–1398. doi: 10.1177/10547738221125632
  2. Centers for Disease Control and Prevention. Long COVID or post-COVID conditions. Updated May 5, 2022. Режим доступа: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html. Дата обращения: 15.12.2022.
  3. Soriano J.B., Murthy S., Marshall J.C., et al.; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus // Lancet Infect Dis. 2022. Vol. 22, N 4. P. e102–e107. doi: 10.1016/S1473-3099(21)00703-9
  4. World Health Organization. A clinical case definition of post COVID-19 condition by Delphi consensus. October 6, 2021. Режим доступа: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1. Дата обращения: 15.12.2022.
  5. National Institute for Health and Care Excellence Royal College of General Practitioners, and Scottish Intercolleciate Guidelines Network COVID-19 rapid guideline: managing the long-term effects of COVID-19. Режим доступа: https://www.nice.org.uk/guidance/NG188. Дата обращения: 15.12.2022.
  6. Venkatesan P. NICE guideline on long COVID // Lancet Respir Med. 2021. Vol. 9, N 2. P. 129. doi: 10.1016/S2213-2600(21)00031-X
  7. Al-Aly Z., Xie Y., Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19 // Nature. 2021. Vol. 594, N 7862. P. 259–264. doi: 10.1038/s41586-021-03553-9
  8. Davis H.E., Assaf G.S., McCorkell L., et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact // E Clin Med. 2021. Vol. 38. P. 101019. doi: 10.1016/j.eclinm.2021.101019
  9. Gluckman T.J., Bhave N.M., Allen L.A., et al. 2022 ACC Expert Consensus Decision Pathway on Cardiovascular Sequelae of COVID-19 in Adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee // J Am Coll Cardiol. 2022. Vol. 79, N 17. P. 1717–1756. doi: 10.1016/j.jacc.2022.02.003
  10. Whitaker M., Elliott J., Chadeau-Hyam M., et al. Persistent COVID-19 symptoms in a community study of 606,434 people in England // Nature Commun. 2022. Vol. 13, № 1. Р. 1957. doi: 10.1038/s41467-022-29521-z
  11. Chand S., Kapoor S., Naqvi A., et al. Long-term follow up of renal and other acute organ failure in survivors of critical illness due to Covid-19 // J Intensive Care Med. 2022. Vol. 37, N 6. P. 736–742. doi: 10.1177/08850666211062582
  12. Sierpina V.S., Seashore J., Kamprath S. Kusm-W Medical Practice Association. Post-Covid Syndrome. In: Conn’s Current Therapy 2022. Ed. by R.D. Kellerman, D. Rakel. Elsevier Health Sciences, 2021. P. 644–650.
  13. Blomberg B., Mohn K.G., Brokstad K.A., et al.; Bergen COVID-19 Research Group. Long COVID in a prospective cohort of home-isolated patients // Nat Med. 2021. Vol. 27, N 9. P. 1607–1613. doi: 10.1038/s41591-021-01433-3
  14. Estiri H., Strasser Z.H., Brat G.A., et al.; Consortium for Characterization of COVID-19 by EHR (4CE). Evolving phenotypes of non-hospitalized patients that indicate long COVID // BMC Med. 2021. Vol. 19, N 1. P. 249. doi: 10.1186/s12916-021-02115-0
  15. Søraas A., Kalleberg K.T., Dahl J.A., et al. Persisting symptoms three to eight months after non-hospitalized COVID-19, a prospective cohort study // PLoS ONE. 2021. Vol. 16, N 8. P. e0256142. doi: 10.1371/journal.pone.0256142
  16. Taquet M., Dercon Q., Luciano S., et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19 // PLoS Med. 2021. Vol. 18, N 9. P. e1003773. doi: 10.1371/journal.pmed.1003773
  17. Arostegui D., Castro K., Schwarz S., et al. Persistent SARS-CoV-2 nucleocapsid protein presence in the intestinal epithelium of a pediatric patient 3 months after acute infection // JPGN Reports. 2022. Vol. 3, N 1. P. e152. doi: 10.1097/PG9.0000000000000152
  18. Cheung C.C., Goh D., Lim X., et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19 // Gut. 2022. Vol. 71, N 1. P. 226–229. doi: 10.1136/gutjnl-2021-324280
  19. Fernández-Castañeda A., Lu P., Geraghty A.C., et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation // Cell. 2022. Vol. 185, N 14. P. 2452–2468.e16. doi: 10.1016/j.cell.2022.06.008
  20. Gaebler C., Wang Z., Lorenzi J.C., et al. Evolution of antibody immunity to SARS-CoV-2 // Nature. 2021. Vol. 591, N 7851. P. 639–644. doi: 10.1038/s41586-021-03207-w
  21. Mehandru S., Merad M. Pathological sequelae of long-haul COVID // Nat Immunol. 2022. Vol. 23, N 2. P. 194–202. doi: 10.1038/s41590-021-01104-y
  22. Rodriguez-Sanchez I., Rodriguez-Mañas L., Laosa O., et al. Long COVID-19: the need for an interdisciplinary approach // Clin Geriatr Med. 2022. Vol. 38, N 3. P. 533–544. doi: 10.1016/j.cger.2022.03.005
  23. Su Y., Yuan D., Chen D.G., et al. Multiple early factors anticipate post-acute COVID-19 sequelae // Cell. 2022. Vol. 185, N 5. P. 881–895.e20. doi: 10.1016/j.cell.2022.01.014
  24. Swank Z., Senussi Y., Manickas-Hill Z., et al. Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae // Clin Infect Dis. 2022. P. ciac722. doi: 10.1093/cid/ciac722
  25. Peluso M.J., Deeks S.G. Early clues regarding the pathogenesis of long-COVID // Trends Immunol. 2022. Vol. 43, N 4. P. 268–270. doi: 10.1016/j.it.2022.02.008
  26. Munblit D., Buonsenso D., Sigfrid L., et al. Post-COVID-19 condition in children: a COS is urgently needed // Lancet Respir Med. 2022. Vol. 10, N 7. P. 628–629. doi: 10.1016/S2213-2600(22)00211-9
  27. Munblit D., Nicholson T., Akrami A., et al. A core outcome set for post-COVID-19 condition in adults for use in clinical practice and research: an international Delphi consensus study // Lancet Respir Med. 2022. Vol. 10, N 7. P. 715–724. doi: 10.1016/S2213-2600(22)00169-2.
  28. Frontera J.A., Simon N.M. Bridging knowledge gaps in the diagnosis and management of neuropsychiatric sequelae of COVID-19 // JAMA Psychiatry. 2022. Vol. 79, N 8. P. 811–817. doi: 10.1001/jamapsychiatry.2022.1616
  29. Reese J.T., Blau H., Casiraghi E., et al.; N3C Consortium, and RECOVER Consortiumv. Generalisable long COVID subtypes: Findings from the NIH N3C and RECOVER programmes // eBioMedicine. 2023. N 87. P. 104413. doi: 10.1016/j.ebiom.2022.104413
  30. Blomberg B., Cox R.J., Langeland N. Long COVID: A growing problem in need of intervention // Cell Rep Med. 2022. Vol. 3, N 3. P. 100552. doi: 10.1016/j.xcrm.2022.100552
  31. Lopez-Leon S., Wegman-Ostrosky T., Del Valle N., et al. Long-COVID in children and adolescents: a systematic review and meta-analyses // Sci Rep. 2022. Vol. 12, N 1. P. 9950. doi: 10.1038/s41598-022-13495-5
  32. Sudre C.H., Murray B., Varsavsky T., et al. Attributes and predictors of long COVID // Nat Med. 2021. Vol. 27, N 4. P. 626–631. doi: 10.1038/s41591-021-01292-y
  33. Tenforde М., Kim S.S., Lindsell C.J., et al.; IVY Network Investigators; CDC COVID-19 Response Team; IVY Network Investigators. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network--United States // Morb Mortal Wkly Rep. 2020. Vol. 69, N 30. P. 993–998. doi: 10.15585/mmwr.mm6930e1
  34. Lambert N., Corps S., El-Azab S.A., et al. The other COVID-19 survivors: Timing, duration, and health impact of post-acute sequelae of SARS-CoV-2 infection // J Clin Nurs. 2022. Vol. 10.1111/jocn.16541. doi: 10.1111/jocn.16541
  35. Huang C., Huang L., Wang Y., et al. 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study // Lancet. 2021. Vol. 397, N 10270. P. 220–232. doi: 10.1016/S0140-6736(20)32656-8
  36. World Health Organization. In the wake of the pandemic: preparing for Long COVID. Режим доступа: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-COVID-19/publications-and-technical-guidance/2021/in-the-wake-of-the-pandemic-preparing-for-long-COVID-2021. Дата обращения: 15.12.2022.
  37. Sykes D.L., Holdsworth L., Jawad N., et al. Post-COVID-19 symptom burden: what is long-COVID and how should we manage it? // Lung. 2021. Vol. 199, N 2. P. 113–119. doi: 10.1007/s00408-021-00423-z
  38. Leviner S. Recognizing the clinical sequelae of COVID-19 in adults: COVID-19 long-haulers // J Nurse Pract. 2021. Vol. 17, N 8. P. 946–949. doi: 10.1016/j.nurpra.2021.05.003
  39. Rogers J.P., Chesney E., Oliver D., et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic // Lancet Psychiat. 2020. Vol. 7, N 7. P. 611–627. doi: 10.1016/S2215-0366(20)30203-0
  40. Lam M.H., Wing Y.K., Yu M.W., et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up // Arch Intern Med. 2009. Vol. 169, N 22. P. 2142–2147. doi: 10.1001/archinternmed.2009.384
  41. Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study // BMC Neurol. 2011. N 11. P. 37. doi: 10.1186/1471-2377-11-37
  42. Bergwerk M., Gonen T., Lustig Y., et al. Covid-19 breakthrough infections in vaccinated health care workers // N Engl J Med. 2021. Vol. 385, N 16. P. 1474–1484. doi: 10.1056/NEJMoa2109072
  43. Antonelli M., Penfold R.S., Merino J., et al. Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study // Lancet Infect Dis. 2022. Vol. 22, N 1. P. 43–55. doi: 10.1016/S1473-3099(21)00460-6
  44. Taquet M., Dercon Q., Harrison P.J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections // Brain Behav Immun. 2022. N 103. P. 154–162. doi: 10.1016/j.bbi.2022.04.013
  45. Al-Aly Z., Bowe B., Xie Y. Long Covid after Breakthrough COVID-19: the post-acute sequelae of breakthrough COVID-19 // Nat Med. 2022. Vol. 28, N 7. P. 1461–1467. doi: 10.1038/s41591-022-01840-0
  46. Malik P., Patel K., Pinto C., et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)--A systematic review and meta-analysis // J Med Virol. 2022. Vol. 94, N 1. P. 253–262. doi: 10.1002/jmv.27309
  47. Peghin M., Palese A., Venturini M., et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients // Clin Microbiol Infect. 2021. Vol. 27, N 10. P. 1507–1513. doi: 10.1016/j.cmi.2021.05.033
  48. Mandal S., Barnett J., Brill S.E., et al. ‘Long-COVID’: a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19 // Thorax. 2021. Vol. 76, N 4. P. 396–398. doi: 10.1136/thoraxjnl-2020-215818
  49. Sigfrid L., Drake T.M., Pauley E., et al. Long Covid in adults discharged from UK hospitals after Covid-19: A prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol // Lancet Reg Health Eur. 2021. N 8. P. 100186. doi: 10.1016/j.lanepe.2021.100186
  50. Patel P., De Cuir J., Abrams J., et al. Clinical characteristics of multisystem inflammatory syndrome in adults: a systematic review // JAMA Netw Open. 2021. Vol. 4, N 9. P. e2126456. doi: 10.1001/jamanetworkopen.2021.26456
  51. Mazza M.G., Palladini M., De Lorenzo R., et al; COVID-19 BioB Outpatient Clinic Study group. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up // Brain Behav Immun. 2021. N 94. P. 138–147. doi: 10.1016/j.bbi.2021.02.021
  52. Ladds E., Rushforth A., Wieringa S., et al. Persistent symptoms after Covid-19: qualitative study of 114 “long Covid” patients and draft quality principles for services // BMC Health Serv Res. 2020. Vol. 20, N 1. P. 1144. doi: 10.1186/s12913-020-06001-y
  53. Sukocheva O.A., Maksoud R., Beeraka N.M., et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndromeб// J Adv Res. 2022. N 40. P. 179–196. doi: 10.1016/j.jare.2021.11.013
  54. Leviner S. Post-sepsis syndrome // Crit Care Nurs Q. 2021. Vol. 44, N 2. P. 182–186. doi: 10.1097/CNQ.0000000000000352
  55. Morin L., Savale L., Pham T., et al. Writing Committee for the COMEBAC Study Group. Four-month clinical status of a cohort of patients after hospitalization for COVID-19 // JAMA. 2021. Vol. 325, N 15. P. 1525–1534. doi: 10.1001/jama.2021.3331
  56. Komaroff A.L., Lipkin W.I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome // Trends Mol Med. 2021. Vol. 27, N 9. P. 895–906. doi: 10.1016/j.molmed.2021.06.002
  57. Wong T.L., Weitzer D.J. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)--a systemic review and comparison of clinical presentation and symptomatology // Medicina. 2021. Vol. 57, N 5. P. 418. doi: 10.3390/medicina57050418
  58. Li P., Zhao W., Kaatz S., et al. Factors associated with risk of postdischarge thrombosis in patients with COVID-19 // JAMA Netw Open. 2021. Vol. 4, N 11. P. e2135397. doi: 10.1001/jamanetworkopen.2021.35397
  59. Choutka J., Jansari V., Hornig M., Iwasaki A. Unexplained post-acute infection syndromes // Nat Med. 2022. Vol. 28, N 5. P. 911–923. doi: 10.1038/s41591-022-01810-6
  60. Zuin M., Engelen M.M., Barco S., et al. Incidence of venous thromboembolic events in COVID-19 patients after hospital discharge: A systematic review and meta-analysis // Thromb Res. 2022. N 209. P. 94–98. doi: 10.1016/j.thromres.2021.11.029
  61. Kastenhuber E.R., Mercadante M., Nilsson-Payant B., et al. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry // Elife. 2022. N 11. P. e77444. doi: 10.7554/eLife.77444
  62. Xie Y., Xu E., Bowe B., Al-Aly Z. Long-term cardiovascular outcomes of COVID-19 // Nat Med. 2022. Vol. 28, N 3. P. 583–590. doi: 10.1038/s41591-022-01689-3
  63. Calabrese L.H., Winthrop K., Strand V., et al. Type I interferon, anti-interferon antibodies, and COVID-19 // Lancet Rheumatol. 2021. Vol. 3, N 4. P. e246–e247. doi: 10.1016/S2665-9913(21)00034-5
  64. Cervia C., Zurbuchen Y., Taeschler P., et al. Immunoglobulin signature predicts risk of post-acute COVID-19 syndrome // Nat Commun. 2022. Vol. 13, N 1. P. 446. doi: 10.1038/s41467-021-27797-1
  65. Liu Q., Mak J.W., Su Q., et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome // Gut. 2022. Vol. 71, N 3. P. 544–552. doi: 10.1136/gutjnl-2021-325989
  66. Stein S., Ramelli S., Grazioli A., et al. SARS-CoV-2 infection and persistence in the human body and brain at autopsy // Nature. 2022. Vol. 612, N 7941. P. 758–763. doi: 10.1038/s41586-022-05542-y
  67. Peluso M.J., Lu S., Tang A.F., et al. Markers of immune activation and inflammation in individuals with postacute sequelae of Severe Acute Respiratory Syndrome Coronavirus 2 infection // J Infect Dis. 2021. Vol. 224, N 11. P. 1839–1848. doi: 10.1093/infdis/jiab490
  68. Phetsouphanh C., Darley D.R., Wilson D.B., et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection // Nat Immunol. 2022. Vol. 23, N 2. P. 210–216. doi: 10.1038/s41590-021-01113-x
  69. Pretorius E., Vlok M., Venter C., et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin // Cardiovasc Diabetol. 2021. Vol. 20, N 1. P. 172. doi: 10.1186/s12933-021-01359-7
  70. Seeßle J., Waterboer T., Hippchen T., et al. Persistent symptoms in adult patients 1 year after Coronavirus Disease 2019 (COVID-19): a prospective cohort study // Clin Infect Dis. 2022. Vol. 74, N 7. P. 1191–1198. doi: 10.1093/cid/ciab611
  71. Ramakrishnan R.K., Kashour T., Hamid Q., et al. Unraveling the mystery surrounding post-acute sequelae of COVID-19 // Front Immunol. 2021. N 12. P. 686029. doi: 10.3389/fimmu.2021.686029
  72. Yonker L.M., Gilboa T., Ogata A.F., et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier // J Clin Invest. 2021. Vol. 131, N 14. P. e149633. doi: 10.1172/JCI149633
  73. Natarajan A., Zlitni S., Brooks E.F., et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection // Med (N Y). 2022. Vol. 3, N 6. P. 371–387.e9. doi: 10.1016/j.medj.2022.04.001
  74. Troyer Z., Alhusaini N., Tabler C.O., et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies // J Extracell Vesicles. 2021. Vol. 10, N 8. P. e12112. doi: 10.1002/jev2.12112
  75. Cevik M., Tate M., Lloydet O., et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis // Lancet Microbe. 2021. Vol. 2, N 1. P. e13–e22. doi: 10.1016/S2666-5247(20)30172-5
  76. Huang J., Zheng L., Li Z., et al. Kinetics of SARS-CoV-2 positivity of infected and recovered patients from a single center // Sci Rep. 2020. Vol. 10. P. 18629. doi: 10.1038/s41598-020-75629-x
  77. Yin Y., Liu X.Z., He X., Zhou L.Q. Exogenous coronavirus interacts with endogenous retrotransposon in human cells // Front Cell Infect Microbiol. 2021. N 11. P. 609160. doi: 10.3389/fcimb.2021.609160
  78. WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Режим доступа: https://covid19.who.int/. Дата обращения: 15.12.2022.
  79. Pfeuffer S., Pawlowski M., Joos G.S., et al. Autoimmunity complicating SARS-CoV-2 infection in selective IgA-deficiency // Neurol Neuroimmunol Neuroinflamm. 2020. Vol. 7, N 6. P. e881. doi: 10.1212/NXI.0000000000000881
  80. Zhang L., Richards A., Barrasa I.M., et al. Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues // Proc Natl Acad Sci USA. 2021. Vol. 118, N 21. P. e2105968118. doi: 10.1073/pnas.2105968118
  81. Wang E.Y., Mao T., Klein J., et al. Diverse functional autoantibodies in patients with COVID-19 // Nature. 2021. Vol. 595, N 7866. P. 283–288. doi: 10.1038/s41586-021-03631-y
  82. Zuniga M., Gomes C., Carsons S.E., et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients // Eur Respir J. 2021. Vol. 58, N 4. P. 2100918. doi: 10.1183/13993003.00918-2021
  83. Combes A.J., Courau T., Kuhn N.F., et al. Global absence and targeting of protective immune states in severe COVID-19 // Nature. 2021. Vol. 591, N 7848. P. 124–130. doi: 10.1038/s41586-021-03234-7
  84. Wallukat G., Hohberger B., Wenzel K., et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms // J Transl Autoimmun. 2021. N 4. P. 100100. doi: 10.1016/j.jtauto.2021.100100
  85. Jonigk D., Werlein C., Lee P.D., et al. Pulmonary and systemic pathology in COVID-19 // Dtsch Arztebl Int. 2022. Vol. 119, N 25. P. 429–435. doi: 10.3238/arztebl.m2022.0231
  86. Xie Y., Choi T., Al-Aly Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19 // medRxiv. 2022. doi: 10.1101/2022.11.03.22281783
  87. Boglione L., Meli G., Poletti F., et al. Risk factors and incidence of long-COVID syndrome in hospitalized patients: does remdesivir have a protective effect? // QJM. 2022. Vol. 114, N 12. P. 865–871. doi: 10.1093/qjmed/hcab297
  88. Kedor C., Freitag H., Meyer-Arndt L., et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity // Nat Commun. 2022. Vol. 13, N 1. P. 5104. doi: 10.1038/s41467-022-32507-6
  89. Bellone M., Calvisi S.L. ACE polymorphisms and COVID-19-related mortality in Europe // J Mol Med (Berl). 2020. Vol. 98, N 11. P. 1505–1509. doi: 10.1007/s00109-020-01981-0
  90. Lv Y., Zhang T., Cai J., et al. Bioinformatics and systems biology approach to identify the pathogenetic link of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome // Front Immunol. 2022. N 13. P. 952987. doi: 10.3389/fimmu.2022.952987
  91. González-Hermosillo J.A., Martínez-López J.P., Carrillo-Lampón S.A., et al. Post-acute COVID-19 symptoms, a potential link with myalgic encephalomyelitis/chronic fatigue syndrome: a 6-month survey in a Mexican cohort // Brain Sci. 2021. Vol. 11, N 6. P. 760. doi: 10.3390/brainsci11060760
  92. Jason L.A., Islam M.F., Conroy K., et al. COVID-19 symptoms over time: comparing long-haulers to ME/CFS // Fatigue: Biomed Health Behav. 2021. Vol. 9, N 2. P. 59–68. doi: 10.1080/21641846.2021.1922140
  93. Wostyn P. COVID-19 and chronic fatigue syndrome: is the worst yet to come? // Med Hypotheses. 2021. N 146. P. 110469. doi: 10.1016/j.mehy.2020.110469
  94. Yang C.P., Chang C.M., Yang C.C., et al. Long COVID and long chain fatty acids (LCFAs): Psychoneuroimmunity implication of omega-3 LCFAs in delayed consequences of COVID-19 // Brain Behav Immun. 2022. N 103. P. 19–27. doi: 10.1016/j.bbi.2022.04.001
  95. Andrade S.B., Siqueira S., de Assis Soares W.R., et al. Long-COVID and post-COVID health complications: an up-to-date review on clinical conditions and their possible molecular mechanisms // Viruses. 2021. Vol. 13, N 4. P. 700. doi: 10.3390/v13040700
  96. Walsh-Messinger J., Manis H., Vrabec A., et al. The kids are not alright: a preliminary report of post-COVID syndrome in university students // J Am Coll Health. 2021. P. 1–7. doi: 10.1080/07448481.2021.1927053
  97. Hegazy M.A., Lithy R.M., Abdel-Hamid H.M., et al. COVID-19 disease outcomes: does gastrointestinal burden play a role? // Clin Exp Gastroenterol. 2021. N 14. P. 199–207. doi: 10.2147/CEG.S297428
  98. Groff A., Kavanaugh M., Ramgobin D., et al. Gastrointestinal manifestations of COVID-19: a review of what we know // Ochsner J. 2021. Vol. 21, N 2. P. 177–180. doi: 10.31486/toj.20.0086
  99. Yeoh Y.K., Zuo T., Lui G.C., et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19 // Gut. 2021. Vol. 70, N 4. P. 698–706. doi: 10.1136/gutjnl-2020-323020
  100. Huang Q., Wu X., Zheng X., et al. Targeting inflammation and cytokine storm in COVID-19 // Pharmacol Res. 2020. N 159. P. 105051. doi: 10.1016/j.phrs.2020.105051
  101. Sfera A., Osorio C., Del Campo C.M., et al. Endothelial senescence and chronic fatigue syndrome, a COVID-19 based hypothesis // Front Cell Neurosci. 2021. N 15. P. 673217. doi: 10.3389/fncel.2021.673217
  102. Sathyamurthy P., Madhavan S., Pandurangan V. Prevalence, pattern and functional outcome of post COVID-19 syndrome in older adults // Cureus. 2021. Vol. 13, N 8. P. e17189. doi: 10.7759/cureus.17189
  103. Tosato M., Carfì A., Martis I., et al. Prevalence and predictors of persistence of COVID-19 symptoms in older adults: a single-center study // J Am Med Dir Assoc. 2021. Vol. 22, N 9. P. 1840–1844. doi: 10.1016/j.jamda.2021.07.003
  104. Groff D., Sun A., Ssentongo A.E., et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review // JAMA Netw Open. 2021. Vol. 4, N 10. P. e2128568. doi: 10.1001/jamanetworkopen.2021.28568
  105. Taquet M., Sillett R., Zhu L., et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients // Lancet Psychiatry. 2022. Vol. 9, N 10. P. 815–827. doi: 10.1016/S2215-0366(22)00260-7
  106. Antonelli M., Pujol J.C., Spector T.D., et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2 // Lancet. 2022. Vol. 399, N 10343. P. 2263–2264. doi: 10.1016/S0140-6736(22)00941-2
  107. Twohig K.A., Nyberg T., Zaidi A., et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study // Lancet Infect Dis. 2022. Vol. 22, N 1. P. 35–42. doi: 10.1016/S1473-3099(21)00475-8
  108. Nyberg T., Ferguson N.M., Nash S.G., et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study // Lancet. 2022. Vol. 399, N 10332. P. 1303–1312. doi: 10.1016/S0140-6736(22)00462-7
  109. Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. N 12. P. 698169. doi: 10.3389/fmicb.2021.698169
  110. Khatiwada S., Subedi A. Lung microbiome and coronavirus disease 2019 (COVID-19): possible link and implications // Hum Microb J. 2020. N 17. P. 100073. doi: 10.1016/j.humic.2020.100073
  111. Marouf N., Cai W., Said K.N., et al. Association between periodontitis and severity of COVID-19 infection: a case–control study // J Clin Periodontol. 2021. Vol. 48, N 4. P. 483–491. doi: 10.1111/jcpe.13435
  112. Shen Z., Xiao Y., Kang L., et al. Genomic diversity of severe acute respiratory syndrome-coronavirus 2 in patients with coronavirus disease 2019 // Clin Infect Dis. 2020. Vol. 71, N 15. P. 713–720. doi: 10.1093/cid/ciaa203
  113. Zuo T., Zhang F., Lui G.C., et al. Alterations in gut microbiota of patients With COVID-19 during time of hospitalization // Gastroenterology. 2020. Vol. 159, N 3. P. 944–955.e8. doi: 10.1053/j.gastro.2020.05.048
  114. Kitsou K., Kotanidou A., Paraskevis D., et al. Upregulation of human endogenous retroviruses in bronchoalveolar lavage fluid of COVID-19 patients // Microbiol Spectr. 2021. Vol. 9, N 2. P. e0126021. doi: 10.1128/Spectrum.01260-21
  115. Dioh W., Chabane M., Tourette C., et al. Testing the efficacy and safety of BIO101, for the prevention of respiratory deterioration, in patients with COVID-19 pneumonia (COVA study): a structured summary of a study protocol for a randomised controlled trial // Trials. 2021. Vol. 22, N 1. P. 42. doi: 10.1186/s13063-020-04998-5
  116. Ni W., Yang X., Yang D., et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19 // Crit Care. 2020. Vol. 24, N 1. P. 422. doi: 10.1186/s13054-020-03120-0222
  117. Crespi B., Alcock J. Conflicts over calcium and the treatment of COVID-19 // Evol Med Public Health. 2021. Vol. 9, N 1. P. 149–156. doi: 10.1093/emph/eoaa046
  118. Thakur P., Shrivastava R., Shrivastava V.K. Oxytocin as a potential adjuvant against COVID-19 infection // Endocr Metab Immune Disord Drug Targets. 2021. Vol. 21, N 7. P. 1155–1162. doi: 10.2174/1871530320666200910114259
  119. Diep P.T., Chaudry M., Dixon A., et al. Oxytocin, the panacea for long-COVID? a review // Horm Mol Biol Clin Investig. 2022. Vol. 43, N 3. P. 363–371. doi: 10.1515/hmbci-2021-0034
  120. Grinevich V., Neumann I.D. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry // Mol Psychiatry. 2021. Vol. 26, N 1. P. 265–279. doi: 10.1038/s41380-020-0802-9
  121. Longobardo A., Montanari C., Shulman R., et al. Inhaled nitric oxide minimally improves oxygenation in COVID-19 related acute respiratory distress syndrome // Br J Anaesth. 2021. Vol. 126, N 1. P. e44–e46. doi: 10.1016/j.bja.2020.10.011
  122. Wang S.C., Wang Y.F. Cardiovascular protective properties of oxytocin against COVID-19 // Life Sci. 2021. N 270. P. 119130. doi: 10.1016/j.lfs.2021.119130
  123. Liu J., Liu S., Zhang Z., et al. Association between the nasopharyngeal microbiome and metabolome in patients with COVID-19 // Synth Syst Biotech. 2021. Vol. 6, N 3. P. 135–143. doi: 10.1016/j.synbio.2021.06.002
  124. Everett N.A., Turner A.J., Costa P.A., et al. The vagus nerve mediates the suppressing effects of peripherally administered oxytocin on methamphetamine self-administration and seeking in rats // Neuropsychopharmacol. 2021. Vol. 46, N 2. P. 297–304. doi: 10.1038/s41386-020-0719-7
  125. Azabou E., Bao G., Bounab R., et al. Vagus nerve stimulation: a potential adjunct therapy for COVID-19 // Front Med. 2021. N 8. P. 625836. doi: 10.3389/fmed.2021.625836
  126. Gryksa K., Neumann I.D. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system // Psychoneuroendocrinology. 2022. N 135. P. 105601. doi: 10.1016/j.psyneuen.2021.105601
  127. Wang S.C., Zhang F., Zhu H., et al. Potential of endogenous oxytocin in endocrine treatment and prevention of COVID-19 // Front Endocrinol (Lausanne). 2022. N 13. P. 799521. doi: 10.3389/fendo.2022.799521
  128. Yong S.J. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments // Infect Dis (Lond). 2021. Vol. 53, N 10. P. 737–754. doi: 10.1080/23744235.2021.1924397
  129. Le Bon S.D., Konopnicki D., Pisarski N., et al. Efficacy and safety of oral corticosteroids and olfactory training in the management of COVID-19-related loss of smell // Eur Arch Otorhinolaryngol. 2021. Vol. 278, N 8. P. 3113–3117. doi: 10.1007/s00405-020-06520-8
  130. Goldenberg D., Dichter M. Unravelling Long COVID. Wiley-Blackwell, 2023. 256 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».