Immunological aspects of overtraining syndrome

Cover Page

Cite item

Full Text

Abstract

Intensified training is a widely accepted approach to improving athletic performance. To achieve consistently high performance, athletes require a balance between training and recovery. Without adequate recovery and muscle rest, an athlete may progress from optimal training to overreaching and, ultimately, to overtraining syndrome, which negatively affects physical health and performance.

The issue of overtraining syndrome remains an underexplored area in sports medicine. Monitoring of pre-competition training is crucial for adjusting training programs. Various physiological and biochemical markers are commonly used to assess athletic conditioning. Changes in these markers help coaches and athletes understand physical status and training effects as they reflect muscle condition, endurance, fatigue, and inflammation response in tissues. However, the sensitivity of individual biomarkers in detecting overtraining is limited, and reference ranges for different training levels are not clearly defined. Systematic assessment of pre-competition preparation and diagnosis of overtraining syndrome remain challenging as the factors, signs/symptoms, and mechanisms of maladaptation are individualized, sport-specific, and understudied. Thus, identification of biomarkers that could aid in monitoring athletic conditioning and preventing and diagnosing overtraining syndrome is a critical research objective.

About the authors

Sergey G. Sсherbak

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Dmitry A. Vologzhanin

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

Stanislav V. Makarenko

Saint-Petersburg State University; Saint-Petersburg City Hospital № 40

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984
Russian Federation, Saint Petersburg; Saint Petersburg

Aleksandr S. Golota

Saint-Petersburg City Hospital № 40

Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Medicine), Assistant Professor

Russian Federation, Saint Petersburg

Tatyana A. Kamilova

Saint-Petersburg City Hospital № 40

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Parmenter D. Some medical aspects of the training of college athletes. Boston Med Surg J. 1923;189(2):45–50. doi: 10.1056/nejm192307121890201
  2. Armstrong LE, Bergeron MF, Lee EC, et al. Overtraining syndrome as a complex systems phenomenon. Front Netw Physiol. 2022;1:794392. doi: 10.3389/fnetp.2021.794392 EDN: VZTBFF
  3. Ward T, Stead T, Mangal R, Ganti L. Prevalence of stress amongst high school athletes (v2). Health Psychol Res. 2023;11:70167. doi: 10.52965/001c.70167 EDN: FHERSC
  4. Baskerville R, Castell L, Bermon S. Sports and immunity, from the recreational to the elite athlete. Infect Dis Now. 2024;54(4S):104893. doi: 10.1016/j.idnow.2024.104893 EDN: MRPNGG
  5. Mallardo M, Daniele A, Musumeci G, Nigro E. A narrative review on adipose tissue and overtraining: Shedding light on the interplay among adipokines, exercise and overtraining. Int J Mol Sci. 2024;25(7):4089. doi: 10.3390/ijms25074089 EDN: VHSDLJ
  6. Costache AD, Costache II, Miftode RȘ, et al. Beyond the finish line: The impact and dynamics of biomarkers in physical exercise: A narrative review. J Clin Med. 2021;10(21):4978. doi: 10.3390/jcm10214978 EDN: XNPKER
  7. Charest J, Grandner MA. Sleep and athletic performance: Impacts on physical performance, mental performance, injury risk and recovery, and mental health. Sleep Med Clin. 2020;15(1):41–57. doi: 10.1016/j.jsmc.2019.11.005
  8. Baker C, Piasecki J, Hunt JA, Hough J. The reproducibility of dendritic cell and T cell counts to a 30-min high-intensity cycling protocol as a tool to highlight overtraining. Exp Physiol. 2024;109(3):380–392. doi: 10.1113/ep091326 EDN: SKXZTF
  9. La Torre ME, Monda A, Messina A, et al. The potential role of nutrition in overtraining syndrome: A narrative review. Nutrients. 2023;15(23):4916. doi: 10.3390/nu15234916 EDN: TOWJTX
  10. Docherty S, Harley R, McAuley JJ, et al. The effect of exercise on cytokines: Implications for musculoskeletal health. A narrative review. BMC Sports Sci Med Rehabil. 2022;14(1):5. doi: 10.1186/s13102-022-00397-2 EDN: UZVGTH
  11. Wang S, Zhou H, Zhao C, He H. Effect of exercise training on body composition and inflammatory cytokine levels in overweight and obese individuals: A systematic review and network meta-analysis. Front Immunol. 2022;13:921085. doi: 10.3389/fimmu.2022.921085 EDN: XVMKPU
  12. Cerqueira É, Marinho DA, Neiva HP, Lourenço O. Inflammatory effects of high and moderate intensity exercise: A systematic review. Front Physiol. 2020;10:1550. doi: 10.3389/fphys.2019.01550 EDN: CYLNOC
  13. Wang T, Wang J, Hu X, et al. Current understanding of glucose transporter 4 expression and functional mechanisms. World J Biol Chem. 2020;11(3):76–98. doi: 10.4331/wjbc.v11.i3.76 EDN: HNWBWL
  14. Rogeri PS, Gasparini SO, Martins GL, et al. Crosstalk between skeletal muscle and immune system: Which roles do IL-6 and glutamine play? Front Physiol. 2020;11:582258. doi: 10.3389/fphys.2020.582258 EDN: MMUCKE
  15. Haller N, Behringer M, Reichel T, et al. Blood-based biomarkers for managing workload in athletes: Considerations and recommendations for evidence-based use of established biomarkers. Sports Med. 2023;53(7):1315–1333. doi: 10.1007/s40279-023-01836-x EDN: DWYZRX
  16. Khoramipour K, Sandbakk O, Hassanzadeh Keshteli A, et al. Metabolomics in exercise and sports: A systematic review. Sports Med. 2022;52(3):547–583. doi: 10.1007/s40279-021-01582-y EDN: FLYQZI
  17. Fu P, Duan X, Zhang Y, et al. Based on sportomics: Comparison of physiological status of collegiate sprinters in different pre-competition preparation periods. Metabolites. 2024;14(10):527. doi: 10.3390/metabo14100527 EDN: SMHRSK
  18. Malsagova KA, Kopylov AT, Stepanov AA, et al. Metabolomic and proteomic profiling of athletes performing physical activity under hypoxic conditions. Sports (Basel). 2024;12(3):72. doi: 10.3390/sports12030072 EDN: QVZZXL
  19. Mika A, Macaluso F, Barone R, et al. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front Physiol. 2019;10:26. doi: 10.3389/fphys.2019.00026
  20. Scheffer D, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165823. doi: 10.1016/j.bbadis.2020.165823 EDN: ELFMAO
  21. Kirichenko TV, Markina YV, Bogatyreva AI, et al. The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci. 2022;23(23):14982. doi: 10.3390/ijms232314982 EDN: HYGTAL
  22. Mallardo M, D’Alleva M, Lazzer S, et al. Improvement of adiponectin in relation to physical performance and body composition in young obese males subjected to twenty-four weeks of training programs. Heliyon. 2023;9(5):e15790. doi: 10.1016/j.heliyon.2023.e15790 EDN: GTZYMA
  23. Simpson RJ, Campbell JP, Gleeson M, et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev. 2020;26:8–22.
  24. Langston PK, Sun Y, Ryback BA, et al. Regulatory T cells shield muscle mitochondria from interferon-γ-mediated damage to promote the beneficial effects of exercise. Sci Immunol. 2023;8(89):eadi5377. doi: 10.1126/sciimmunol.adi5377 EDN: BTQAHQ
  25. Mishica C, Kyröläinen H, Hynynen E, et al. Relationships between heart rate variability, sleep duration, cortisol and physical training in young athletes. J Sports Sci Med. 2021;20(4):778–788. doi: 10.52082/jssm.2021.778 EDN: DWEIRT
  26. Muscella A, My G, Okba S, et al. Effects of training on plasmatic cortisol and testosterone in football female referees. Physiol Rep. 2022;10(9):e15291. doi: 10.14814/phy2.15291 EDN: UVUPIJ
  27. Brini S, Ben Abderrahman A, Boullosa D, et al. Effects of a 12-week change-of-direction sprints training program on selected physical and physiological parameters in professional basketball male players. Int J Environ Res Public Health. 2020;17(21):8214. doi: 10.3390/ijerph17218214 EDN: VOUEGX
  28. Cadegiani FA, Kater CE. Enhancement of hypothalamic-pituitary activity in male athletes: Evidence of a novel hormonal mechanism of physical conditioning. BMC Endocr Disord. 2019;19(1):117. doi: 10.1186/s12902-019-0443-7 EDN: ZWJSQB
  29. Hough J, Leal D, Scott G, et al. Reliability of salivary cortisol and testosterone to a high-intensity cycling protocol to highlight overtraining. J Sports Sci. 2021;39(18):2080–2086. doi: 10.1080/02640414.2021.1918362 EDN: JPJGLR
  30. Ostapiuk-Karolczuk J, Kasperska A, Dziewiecka H, et al. Changes in the hormonal and inflammatory profile of young sprint- and endurance-trained athletes following a sports camp: A nonrandomized pretest-posttest study. BMC Sports Sci Med Rehabil. 2024;16(1):136. doi: 10.1186/s13102-024-00924-3 EDN: WHBDVG
  31. Wegierska AE, Charitos IA, Topi S, et al. The connection between physical exercise and gut microbiota: Implications for competitive sports athletes. Sports Med. 2022;52(10):2355–2369. doi: 10.1007/s40279-022-01696-x EDN: BULBVM
  32. Kostrzewa-Nowak D, Nowak R. Differential Th cell-related immune responses in young physically active men after an endurance effort. J Clin Med. 2020;9(6):1795. doi: 10.3390/jcm9061795 EDN: AGFNHJ
  33. Barbalho SM, Prado Neto EV, De Alvares Goulart R, et al. Myokines: A descriptive review. J Sports Med Phys Fitness. 2020;60(12):1583–1590. doi: 10.23736/S0022-4707.20.10884-3 EDN: BYWXAD
  34. Talvas J, Norgieux C, Burban E. Vitamin D deficiency contributes to overtraining syndrome in excessive trained C57BL/6 mice. Scand J Med Sci Sports. 2023;33(11):2149–2165. doi: 10.1111/sms.14449 EDN: FOQTOT
  35. Ruuskanen O, Luoto R, Valtonen M, et al. Respiratory viral infections in athletes: Many unanswered questions. Sports Med. 2022;52(9):2013–2021. doi: 10.1007/s40279-022-01660-9 EDN: JXFLOG
  36. Silva JR, Rumpf MC, Hertzog M, et al. Acute and residual soccer match-related fatigue: A systematic review and meta-analysis. Sports Med. 2018;48(3):539–583. doi: 10.1007/s40279-017-0798-8 EDN: XDZWBK
  37. Bonilla DA, Pérez-Idárraga A, Odriozola-Martínez A, Kreider RB. The 4R’s framework of nutritional strategies for post-exercise recovery: A review with emphasis on new generation of carbohydrates. Int J Environ Res Public Health. 2021;18(1):103. doi: 10.3390/ijerph18010103
  38. Wilmanski T, Diener C, Rappaport N, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab. 2021;3(2):274–286. doi: 10.1038/s42255-021-00348-0
  39. Aya V, Flórez A, Perez L, Ramírez JD. Association between physical activity and changes in intestinal microbiota composition: A systematic review. PLoS One. 2021;16(2):e0247039. doi: 10.1371/journal.pone.0247039 EDN: ZBGGDD
  40. Scheiman J, Luber JM, Chavkin TA, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019;25(7):1104–1109. 10.1038/s41591-019-0485-4 EDN: NJEFTB
  41. Yuan X, Xu S, Huang H, et al. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model. Scand J Med Sci Sports. 2018;28(5):1541–1551. doi: 10.1111/sms.13060 EDN: PDFBGT
  42. Li Y, Cheng M, Zha Y, et al. Gut microbiota and inflammation patterns for specialized athletes: A multi-cohort study across different types of sports. mSystems. 2023;8(4):e0025923. doi: 10.1128/msystems.00259-23 EDN: JVLJZM

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».