Virtual Reality in Medical Rehabilitation

Cover Page

Cite item

Full Text

Abstract

Patients with motor and/or cognitive disorders, a history of stroke or head/spinal cord injury, chronic pain, neurodegenerative diseases, or neurological complications of severe COVD-19 may not benefit from pharmacotherapy or traditional rehabilitation. Virtual reality is an innovative therapeutic approach that restores lost functions. This interactive technology uses computer modeling to create a virtual world. Virtual reality provides multisensory stimulation, activates restorative neural mechanisms, and produces an analgesic effect. In recent years, virtual reality has become more prevalent in neurology. It improves motor and cognitive outcomes in patients with various neurological and neuropsychological dysfunctions. These improvements are the result of neuroplasticity and neurogenesis in brain lesions. Virtual reality–based rehabilitation can be used alone or in combination with other treatment options. The most effective treatment combines exercise therapy, physical therapy, psychological counseling, standard cognitive training, and training with immersive virtual reality technology. This technology creates a sense of presence in a three-dimensional digital environment. With head-mounted displays and body monitoring sensors, users can interact naturally with virtual objects. Systematic reviews and meta-analyses have shown that depending on the initial condition, most patients demonstrate improvement in voluntary range of motion, balance, cognitive function, mood, quality of life, anxiety, and pain. Therefore, virtual reality–based therapy is a promising rehabilitation option for patients with neurological symptoms. Virtual reality–based neurological rehabilitation allows for the personalized selection of exercise complexity and intensity, thereby increasing patient compliance through gamification. However, further research is needed to standardize virtual reality–based modalities, clarify inclusion and exclusion criteria for clinical trials, optimize protocols, and evaluate long-term effects.

About the authors

Sergey G. Shcherbak

Saint Petersburg State University; Saint Petersburg City Hospital No. 40

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

Dmitry A. Vologzhanin

Saint Petersburg State University; Saint Petersburg City Hospital No. 40

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg; Saint Petersburg

Stanislav V. Makarenko

Saint Petersburg State University; Saint Petersburg City Hospital No. 40

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984
Russian Federation, Saint Petersburg; Saint Petersburg

Alexander S. Golota

Saint Petersburg City Hospital No. 40

Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, Saint Petersburg

Tatiana A. Kamilova

Saint Petersburg City Hospital No. 40

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Macchitella L, Spaccavento S, Arigliani M, et al. A narrative review of the use of a cutting-edge virtual reality rehabilitation technology in neurological and neuropsychological rehabilitation. NeuroRehabil. 2023;53(4):439–457. doi: 10.3233/NRE-230066
  2. Wang L, Zhang H, Ai H, Liu Y. Effects of virtual reality rehabilitation after spinal cord injury: A systematic review and meta-analysis. J Neuroeng Rehabil. 2024;21(1):191. doi: 10.1186/s12984-024-01492-w
  3. Ceradini M, Losanno E, Micera S, et al. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: A scoping review. J Neuroeng Rehabil. 2024;21(1):75. doi: 10.1186/s12984-024-01367-0
  4. Zhang J, Wu M, Li J, et al. Effects of virtual reality-based rehabilitation on cognitive function and mood in multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. Mult Scler Relat Disord. 2024;87:105643. doi: 10.1016/j.msard.2024.105643
  5. Wang C, Kong J, Qi H. Areas of research focus and trends in the research on the application of VR in rehabilitation medicine. Healthcare (Basel). 2023;11(14):2056. doi: 10.3390/healthcare11142056
  6. Obrero-Gaitán E, Chau-Cubero CY, Lomas-Vega R, et al. Effectiveness of virtual reality-based therapy in pulmonary rehabilitation of chronic obstructive pulmonary disease: A systematic review with meta-analysis. Heart Lung. 2024;65:1–10. doi: 10.1016/j.hrtlng.2024.01.011
  7. Takei K, Morita S, Watanabe Y. Acceptability of physical therapy combined with nintendo ring fit adventure exergame for geriatric hospitalized patients. Games Health J. 2024;13(1):33–39. doi: 10.1089/g4h.2023.0009
  8. Drazich BF, McPherson R, Gorman EF, et al. In too deep? A systematic literature review of fully-immersive virtual reality and cybersickness among older adults. J Am Geriatr Soc. 2023;71(12):3906–3915. doi: 10.1111/jgs.18553
  9. Hara M, Murakawa Y, Wagatsuma T, et al. Feasibility of somato-cognitive coordination therapy using virtual reality for patients with advanced severe Parkinson’s disease. J Parkinsons Dis. 2024;14(4):895–898. doi: 10.3233/JPD-240011
  10. Bailey RB. Highlighting hybridization: A case report of virtual reality-augmented interventions to improve chronic post-stroke recovery. Medicine (Baltimore). 2022;101(25):e29357. doi: 10.1097/MD.0000000000029357
  11. Contrada M, Arcuri F, Tonin P, et al. Stroke telerehabilitation in Calabria: A health technology assessment. Front Neurol. 2022;12:777608. doi: 10.3389/fneur.2021.777608
  12. Luque-Moreno C, Kiper P, Solís-Marcos I, et al. Virtual reality and physiotherapy in post-stroke functional re-education of the lower extremity: A controlled clinical trial on a new approach. J Pers Med. 2021;11(11):1210. doi: 10.3390/jpm11111210
  13. Duan H, Jing Y, Li Y, et al. Rehabilitation treatment of multiple sclerosis. Front Immunol. 2023;14:1168821. doi: 10.3389/fimmu.2023.1168821
  14. Liu Y, Lin R, Tian X, et al. Effects of VR task-oriented training combined with rTMS on balance function and brain plasticity in stroke patients: a randomized controlled trial study protocol. Trials. 2024;25(1):702. doi: 10.1186/s13063-024-08519-6
  15. Heinrich C, Morkisch N, Langlotz T, et al. Feasibility and psychophysical effects of immersive virtual reality-based mirror therapy. J Neuroeng Rehabil. 2022;19(1):107. doi: 10.1186/s12984-022-01086-4
  16. Kamm CP, Blättler R, Kueng R, Vanbellingen T. Feasibility and usability of a new home-based immersive virtual reality headset-based dexterity training in multiple sclerosis. Mult Scler Relat Disord. 2023;71:104525. doi: 10.1016/j.msard.2023.104525
  17. Gebreheat G, Antonopoulos N, Porter-Armstrong A. Application of immersive virtual reality mirror therapy for upper limb rehabilitation after stroke: A scoping review. Neurol Sci. 2024;45(9):4173–4184. doi: 10.1007/s10072-024-07543-3
  18. Demeco A, Zola L, Frizziero A, et al. Immersive virtual reality in post-stroke rehabilitation: A systematic review. Sensors (Basel). 2023;23(3):1712. doi: 10.3390/s23031712
  19. Mekbib DB, Zhao Z, Wang J, et al. Proactive motor functional recovery following immersive virtual reality-based limb mirroring therapy in patients with subacute stroke. Neurotherapeutics. 2020;17(4):1919–1930. doi: 10.1007/s13311-020-00882-x
  20. Chang WK, Lim H, Park SH, et al. Effect of immersive virtual mirror visual feedback on Mu suppression and coherence in motor and parietal cortex in stroke. Sci Rep. 2023;13(1):12514. doi: 10.1038/s41598-023-38749-8
  21. Da Silva Jaques E, Figueiredo AI, Schiavo A, et al. Conventional mirror therapy versus immersive virtual reality mirror therapy: The perceived usability after stroke. Stroke Res Treat. 2023;2023:5080699. doi: 10.1155/2023/5080699
  22. De Luca R, Leonardi S, Maresca G, et al. Virtual reality as a new tool for the rehabilitation of post-stroke patients with chronic aphasia: An exploratory study. Aphasiology. 2023;37(2):249–259. doi: 10.1080/02687038.2021.1998882
  23. Bu X, Ng PH, Tong Y, et al. A mobile-based virtual reality speech rehabilitation app for patients with aphasia after stroke: Development and pilot usability study. JMIR Serious Games. 2022;10(2):e30196. doi: 10.2196/30196
  24. De Luca R, Bonanno M, Rifici C, et al. Does non-immersive virtual reality improve attention processes in severe traumatic brain injury? Encouraging data from a pilot study. Brain Sci. 2022;12(9):1211. doi: 10.3390/brainsci12091211
  25. De Luca R, Bonanno M, Marra A, et al. Can virtual reality cognitive rehabilitation improve executive functioning and coping strategies in traumatic brain injury? Brain Sci. 2023;13(4):578. doi: 10.3390/brainsci13040578
  26. Calabrò RS, Bonanno M, Torregrossa W, et al. Benefits of telerehabilitation for patients with severe acquired brain injury: Promising results from a multicenter randomized controlled trial using nonimmersive virtual reality. J Med Internet Res. 2023;25:e45458. doi: 10.2196/45458
  27. Papaioannou T, Voinescu A, Petrini K, Stanton Fraser D. Efficacy and moderators of virtual reality for cognitive training in people with dementia and mild cognitive impairment: A systematic review and meta-analysis. J Alzheimers Dis. 2022;88(4):1341–1370. doi: 10.3233/JAD-210672
  28. Goffredo M, Pagliari C, Turolla A, et al.; RIN_TR_Group. Non-immersive virtual reality telerehabilitation system improves postural balance in people with chronic neurological diseases. J Clin Med. 2023;12(9):3178. doi: 10.3390/jcm12093178
  29. Pagliari C, Di Tella S, Jonsdottir J, et al. Effects of home-based virtual reality telerehabilitation system in people with multiple sclerosis: A randomized controlled trial. J Telemed Telecare. 2024;30(2):344–355. doi: 10.1177/1357633X211054839
  30. Kashif M, Ahmad A, Bandpei MA, et al. A randomized controlled trial of motor imagery combined with virtual reality techniques in patients with Parkinson’s disease. J Pers Med. 2022;12(3):450. doi: 10.3390/jpm12030450
  31. Sarasso E, Gardoni A, Tettamanti A, et al. Virtual reality balance training to improve balance and mobility in Parkinson’s disease: A systematic review and meta-analysis. J Neurol. 2022;269(4):1873–1888. doi: 10.1007/s00415-021-10857-3
  32. Yau CE, Ho EC, Ong NY, et al. Innovative technology-based interventions in Parkinson’s disease: A systematic review and meta-analysis. Аnn Clin Transl Neurol. 2024;11(10):2548–2562. doi: 10.1002/acn3.52160
  33. Rodriguez ST, Makarewicz N, Wang EY, et al. Virtual reality facilitated exercise increases sympathetic activity and reduces pain perception: A randomized crossover study. Am J Phys Med Rehabil. 2024;104(1):51–57. doi: 10.1097/PHM.0000000000002550
  34. Lo HH, Zhu M, Zou Z, et al. Immersive and nonimmersive virtual reality-assisted active training in chronic musculoskeletal pain: Systematic review and meta-analysis. Med Internet Res. 2024;26:e48787. doi: 10.2196/48787
  35. Nicholas M, Vlaeyen JW, Rief W, et al.; IASP Taskforce for the Classification of Chronic Pain. The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain. 2019;160(1):28–37. doi: 10.1097/j.pain.0000000000001390
  36. Van Bogaert W, Coppieters I, Kregel J, et al. Influence of baseline kinesiophobia levels on treatment outcome in people with chronic spinal pain. Phys Ther. 2021;101(6):pzab076. doi: 10.1093/ptj/pzab076.6145902
  37. Maddox T, Sparks CY, Oldstone L, et al. Perspective: the promise of virtual reality as an immersive therapeutic. J Med Ext Real. 2024;1(1):13–20. doi: 10.1089/jmxr.2023.0003
  38. Guo Q, Zhang L, Gui C, et al. Virtual reality intervention for patients with neck pain: Systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2023;25:e38256. doi: 10.2196/38256
  39. Kantha P, Lin J, Hsu W. The effects of interactive virtual reality in patients with chronic musculoskeletal disorders: A systematic review and meta-analysis. Games Health J. 2023;12(1):1–12. doi: 10.1089/g4h.2022.0088
  40. Brea-Gómez B, Laguna-González A, Pérez-Gisbert L, et al. Virtual reality based rehabilitation in adults with chronic neck pain: A systematic review and meta-analysis of randomized clinical trials. Virtual Real. 2024;28(2):1–31. doi: 10.1007/s10055-024-00979-0
  41. Simons LE, Hess CW, Choate ES, et al. Virtual reality-augmented physiotherapy for chronic pain in youth: Protocol for a randomized controlled trial enhanced with a single-case experimental design. JMIR Res Protoc. 2022;11:e40705. doi: 10.2196/40705
  42. Neiman NR, Falkson SR, Rodriguez ST, et al. Quantifying virtual reality pain modulation in healthy volunteers: A randomized, crossover study. J Clin Anesth. 2022;80:110876. doi: 10.1016/j.jclinane.2022.110876
  43. Senarath ID, Chen KK, Weerasekara I, de Zoete RM. Exercise-induced hypoalgesic effects of different types of physical exercise in individuals with neck pain: A systematic review and meta-analysis. Pain Pract. 2023;23(1):110–122. doi: 10.1111/papr.13150
  44. Shahmoradi L, Rezayi S. Cognitive rehabilitation in people with autism spectrum disorder: A systematic review of emerging virtual reality-based approaches. J Neuroeng Rehabil. 2022;19(1):91. doi: 10.1186/s12984-022-01069-5
  45. Moulaei K, Bahaadinbeigy K, Haghdoostd A, et al. An analysis of clinical outcomes and essential parameters for designing effective games for upper limb rehabilitation: A scoping review. Health Sci Rep. 2023;6(5):e1255. doi: 10.1002/hsr2.1255
  46. Yang JG, Thapa N, Park HJ, et al. Virtual reality and exercise training enhance brain, cognitive, and physical health in older adults with mild cognitive impairment. Int J Environ Res Public Health. 2022;19(20):13300. doi: 10.3390/ijerph192013300
  47. Moulaei K, Sheikhtaheri A, Haghdoost A, et al. Efficacy of virtual reality-based training programs and games on the improvement of cognitive disorders in patients: A systematic review and meta-analysis. BMC Psychiatry. 2024;24(1):116. doi: 10.1186/s12888-024-05563-z
  48. Liu Z, He Z, Yuan J, et al. Application of immersive virtual-reality-based puzzle games in elderly patients with post-stroke cognitive impairment: A pilot study. Brain Sci. 2022;13(1):79. doi: 10.3390/brainsci13010079
  49. Serafin S, Adjorlu A, Percy-Smith LM. A review of virtual reality for individuals with hearing impairments. Multimodal Technol Interact. 2023;7(4):36. doi: 10.3390/mti7040036
  50. Van ‘t Wout-Frank M, Arulpragasam AR, Faucher C, et al. Virtual reality and transcranial direct current stimulation for posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry. 2024;81(5):437–446. doi: 10.1001/jamapsychiatry.2023.5661
  51. Schnurr PP, Hamblen JL, Wolf J, et al. The management of posttraumatic stress disorder and acute stress disorder: Synopsis of the 2023 U.S. Department of veterans affairs and U.S. Department of defense clinical practice guideline. Ann Intern Med. 2024;177(3):363–374. doi: 10.7326/M23-2757
  52. Van ‘t Wout M, Longo SM, Reddy MK, et al. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav. 2017;7(5):e00681. doi: 10.1002/brb3.681
  53. Philip NS, Brettler K, Greenberg BD, et al. One year clinical outcomes after transcranial direct current stimulation and virtual reality for posttraumatic stress disorder. Brain Stimul. 2024;17(4):896–898. doi: 10.1016/j.brs.2024.07.016
  54. Madore MR, Kozel FA, Williams LM, et al. Prefrontal transcranial magnetic stimulation for depression in US military veterans: A naturalistic cohort study in the veterans health administration. J Affect Disord. 2022;297:671–678. doi: 10.1016/j.jad.2021.10.025
  55. Patsaki I, Avgeri V, Rigoulia T, et al. Benefits from incorporating virtual reality in pulmonary rehabilitation of COPD patients: A systematic review and meta-analysis. Adv Respir Med. 2023;91(4):324–336. doi: 10.3390/arm91040026
  56. Czech O, Matkowski R, Skórniak J, Malicka I. Psychological and physical well-being in women diagnosed with breast cancer: A comprehensive study of anxiety, depression, sleep quality, physical activity, and sociodemographic factors. Med Sci Monit. 2024;30:e943490. doi: 10.12659/MSM.943490
  57. Sun M, Liu C, Lu Y, et al. Effects of physical activity on quality of life, anxiety and depression in breast cancer survivors: A systematic review and meta-analysis. Asian Nurs Res (Korean Soc Nurs Sci). 2023;17(5):276–285. doi: 10.1016/j.anr.2023.11.001
  58. Czech O, Kowaluk A, Ściepuro T, et al. Effects of immersive virtual therapy as a method supporting the psychological and physical well-being of women with a breast cancer diagnosis: A randomized rial. Curr Oncol. 2024;31(10):6419–6432. doi: 10.3390/curroncol31100477
  59. Micheluzzi V, Burrai F, Casula M, et al. Effectiveness of virtual reality on pain and anxiety in patients undergoing cardiac procedures: A systematic review and meta-analysis of randomized controlled trials. Curr Probl Cardiol. 2024;49(5):102532. doi: 10.1016/j.cpcardiol.2024.102532
  60. Rutkowski S, Bogacz K, Czech O, et al. Effectiveness of an inpatient virtual reality-based pulmonary rehabilitation program among COVID-19 patients on symptoms of anxiety, depression and quality of life: Preliminary results from a randomized controlled trial. Int J Environ Res Public Health. 2022;19(24):16980. doi: 10.3390/ijerph192416980

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».