Virtual Reality in Medical Rehabilitation
- Authors: Shcherbak S.G.1,2, Vologzhanin D.A.1,2, Makarenko S.V.1,2, Golota A.S.2, Kamilova T.A.2
-
Affiliations:
- Saint Petersburg State University
- Saint Petersburg City Hospital No. 40
- Issue: Vol 7, No 2 (2025)
- Pages: 134-153
- Section: REVIEWS
- URL: https://journal-vniispk.ru/2658-6843/article/view/314426
- DOI: https://doi.org/10.36425/rehab677338
- EDN: https://elibrary.ru/QXFKLM
- ID: 314426
Cite item
Full Text
Abstract
Patients with motor and/or cognitive disorders, a history of stroke or head/spinal cord injury, chronic pain, neurodegenerative diseases, or neurological complications of severe COVD-19 may not benefit from pharmacotherapy or traditional rehabilitation. Virtual reality is an innovative therapeutic approach that restores lost functions. This interactive technology uses computer modeling to create a virtual world. Virtual reality provides multisensory stimulation, activates restorative neural mechanisms, and produces an analgesic effect. In recent years, virtual reality has become more prevalent in neurology. It improves motor and cognitive outcomes in patients with various neurological and neuropsychological dysfunctions. These improvements are the result of neuroplasticity and neurogenesis in brain lesions. Virtual reality–based rehabilitation can be used alone or in combination with other treatment options. The most effective treatment combines exercise therapy, physical therapy, psychological counseling, standard cognitive training, and training with immersive virtual reality technology. This technology creates a sense of presence in a three-dimensional digital environment. With head-mounted displays and body monitoring sensors, users can interact naturally with virtual objects. Systematic reviews and meta-analyses have shown that depending on the initial condition, most patients demonstrate improvement in voluntary range of motion, balance, cognitive function, mood, quality of life, anxiety, and pain. Therefore, virtual reality–based therapy is a promising rehabilitation option for patients with neurological symptoms. Virtual reality–based neurological rehabilitation allows for the personalized selection of exercise complexity and intensity, thereby increasing patient compliance through gamification. However, further research is needed to standardize virtual reality–based modalities, clarify inclusion and exclusion criteria for clinical trials, optimize protocols, and evaluate long-term effects.
Full Text
##article.viewOnOriginalSite##About the authors
Sergey G. Shcherbak
Saint Petersburg State University; Saint Petersburg City Hospital No. 40
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-code: 1537-9822
MD, Dr. Sci. (Medicine), Professor
Russian Federation, Saint Petersburg; Saint PetersburgDmitry A. Vologzhanin
Saint Petersburg State University; Saint Petersburg City Hospital No. 40
Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302
MD, Dr. Sci. (Medicine)
Russian Federation, Saint Petersburg; Saint PetersburgStanislav V. Makarenko
Saint Petersburg State University; Saint Petersburg City Hospital No. 40
Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984
Russian Federation, Saint Petersburg; Saint Petersburg
Alexander S. Golota
Saint Petersburg City Hospital No. 40
Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870
MD, Cand. Sci. (Medicine), Associate Professor
Russian Federation, Saint PetersburgTatiana A. Kamilova
Saint Petersburg City Hospital No. 40
Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgReferences
- Macchitella L, Spaccavento S, Arigliani M, et al. A narrative review of the use of a cutting-edge virtual reality rehabilitation technology in neurological and neuropsychological rehabilitation. NeuroRehabil. 2023;53(4):439–457. doi: 10.3233/NRE-230066
- Wang L, Zhang H, Ai H, Liu Y. Effects of virtual reality rehabilitation after spinal cord injury: A systematic review and meta-analysis. J Neuroeng Rehabil. 2024;21(1):191. doi: 10.1186/s12984-024-01492-w
- Ceradini M, Losanno E, Micera S, et al. Immersive VR for upper-extremity rehabilitation in patients with neurological disorders: A scoping review. J Neuroeng Rehabil. 2024;21(1):75. doi: 10.1186/s12984-024-01367-0
- Zhang J, Wu M, Li J, et al. Effects of virtual reality-based rehabilitation on cognitive function and mood in multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. Mult Scler Relat Disord. 2024;87:105643. doi: 10.1016/j.msard.2024.105643
- Wang C, Kong J, Qi H. Areas of research focus and trends in the research on the application of VR in rehabilitation medicine. Healthcare (Basel). 2023;11(14):2056. doi: 10.3390/healthcare11142056
- Obrero-Gaitán E, Chau-Cubero CY, Lomas-Vega R, et al. Effectiveness of virtual reality-based therapy in pulmonary rehabilitation of chronic obstructive pulmonary disease: A systematic review with meta-analysis. Heart Lung. 2024;65:1–10. doi: 10.1016/j.hrtlng.2024.01.011
- Takei K, Morita S, Watanabe Y. Acceptability of physical therapy combined with nintendo ring fit adventure exergame for geriatric hospitalized patients. Games Health J. 2024;13(1):33–39. doi: 10.1089/g4h.2023.0009
- Drazich BF, McPherson R, Gorman EF, et al. In too deep? A systematic literature review of fully-immersive virtual reality and cybersickness among older adults. J Am Geriatr Soc. 2023;71(12):3906–3915. doi: 10.1111/jgs.18553
- Hara M, Murakawa Y, Wagatsuma T, et al. Feasibility of somato-cognitive coordination therapy using virtual reality for patients with advanced severe Parkinson’s disease. J Parkinsons Dis. 2024;14(4):895–898. doi: 10.3233/JPD-240011
- Bailey RB. Highlighting hybridization: A case report of virtual reality-augmented interventions to improve chronic post-stroke recovery. Medicine (Baltimore). 2022;101(25):e29357. doi: 10.1097/MD.0000000000029357
- Contrada M, Arcuri F, Tonin P, et al. Stroke telerehabilitation in Calabria: A health technology assessment. Front Neurol. 2022;12:777608. doi: 10.3389/fneur.2021.777608
- Luque-Moreno C, Kiper P, Solís-Marcos I, et al. Virtual reality and physiotherapy in post-stroke functional re-education of the lower extremity: A controlled clinical trial on a new approach. J Pers Med. 2021;11(11):1210. doi: 10.3390/jpm11111210
- Duan H, Jing Y, Li Y, et al. Rehabilitation treatment of multiple sclerosis. Front Immunol. 2023;14:1168821. doi: 10.3389/fimmu.2023.1168821
- Liu Y, Lin R, Tian X, et al. Effects of VR task-oriented training combined with rTMS on balance function and brain plasticity in stroke patients: a randomized controlled trial study protocol. Trials. 2024;25(1):702. doi: 10.1186/s13063-024-08519-6
- Heinrich C, Morkisch N, Langlotz T, et al. Feasibility and psychophysical effects of immersive virtual reality-based mirror therapy. J Neuroeng Rehabil. 2022;19(1):107. doi: 10.1186/s12984-022-01086-4
- Kamm CP, Blättler R, Kueng R, Vanbellingen T. Feasibility and usability of a new home-based immersive virtual reality headset-based dexterity training in multiple sclerosis. Mult Scler Relat Disord. 2023;71:104525. doi: 10.1016/j.msard.2023.104525
- Gebreheat G, Antonopoulos N, Porter-Armstrong A. Application of immersive virtual reality mirror therapy for upper limb rehabilitation after stroke: A scoping review. Neurol Sci. 2024;45(9):4173–4184. doi: 10.1007/s10072-024-07543-3
- Demeco A, Zola L, Frizziero A, et al. Immersive virtual reality in post-stroke rehabilitation: A systematic review. Sensors (Basel). 2023;23(3):1712. doi: 10.3390/s23031712
- Mekbib DB, Zhao Z, Wang J, et al. Proactive motor functional recovery following immersive virtual reality-based limb mirroring therapy in patients with subacute stroke. Neurotherapeutics. 2020;17(4):1919–1930. doi: 10.1007/s13311-020-00882-x
- Chang WK, Lim H, Park SH, et al. Effect of immersive virtual mirror visual feedback on Mu suppression and coherence in motor and parietal cortex in stroke. Sci Rep. 2023;13(1):12514. doi: 10.1038/s41598-023-38749-8
- Da Silva Jaques E, Figueiredo AI, Schiavo A, et al. Conventional mirror therapy versus immersive virtual reality mirror therapy: The perceived usability after stroke. Stroke Res Treat. 2023;2023:5080699. doi: 10.1155/2023/5080699
- De Luca R, Leonardi S, Maresca G, et al. Virtual reality as a new tool for the rehabilitation of post-stroke patients with chronic aphasia: An exploratory study. Aphasiology. 2023;37(2):249–259. doi: 10.1080/02687038.2021.1998882
- Bu X, Ng PH, Tong Y, et al. A mobile-based virtual reality speech rehabilitation app for patients with aphasia after stroke: Development and pilot usability study. JMIR Serious Games. 2022;10(2):e30196. doi: 10.2196/30196
- De Luca R, Bonanno M, Rifici C, et al. Does non-immersive virtual reality improve attention processes in severe traumatic brain injury? Encouraging data from a pilot study. Brain Sci. 2022;12(9):1211. doi: 10.3390/brainsci12091211
- De Luca R, Bonanno M, Marra A, et al. Can virtual reality cognitive rehabilitation improve executive functioning and coping strategies in traumatic brain injury? Brain Sci. 2023;13(4):578. doi: 10.3390/brainsci13040578
- Calabrò RS, Bonanno M, Torregrossa W, et al. Benefits of telerehabilitation for patients with severe acquired brain injury: Promising results from a multicenter randomized controlled trial using nonimmersive virtual reality. J Med Internet Res. 2023;25:e45458. doi: 10.2196/45458
- Papaioannou T, Voinescu A, Petrini K, Stanton Fraser D. Efficacy and moderators of virtual reality for cognitive training in people with dementia and mild cognitive impairment: A systematic review and meta-analysis. J Alzheimers Dis. 2022;88(4):1341–1370. doi: 10.3233/JAD-210672
- Goffredo M, Pagliari C, Turolla A, et al.; RIN_TR_Group. Non-immersive virtual reality telerehabilitation system improves postural balance in people with chronic neurological diseases. J Clin Med. 2023;12(9):3178. doi: 10.3390/jcm12093178
- Pagliari C, Di Tella S, Jonsdottir J, et al. Effects of home-based virtual reality telerehabilitation system in people with multiple sclerosis: A randomized controlled trial. J Telemed Telecare. 2024;30(2):344–355. doi: 10.1177/1357633X211054839
- Kashif M, Ahmad A, Bandpei MA, et al. A randomized controlled trial of motor imagery combined with virtual reality techniques in patients with Parkinson’s disease. J Pers Med. 2022;12(3):450. doi: 10.3390/jpm12030450
- Sarasso E, Gardoni A, Tettamanti A, et al. Virtual reality balance training to improve balance and mobility in Parkinson’s disease: A systematic review and meta-analysis. J Neurol. 2022;269(4):1873–1888. doi: 10.1007/s00415-021-10857-3
- Yau CE, Ho EC, Ong NY, et al. Innovative technology-based interventions in Parkinson’s disease: A systematic review and meta-analysis. Аnn Clin Transl Neurol. 2024;11(10):2548–2562. doi: 10.1002/acn3.52160
- Rodriguez ST, Makarewicz N, Wang EY, et al. Virtual reality facilitated exercise increases sympathetic activity and reduces pain perception: A randomized crossover study. Am J Phys Med Rehabil. 2024;104(1):51–57. doi: 10.1097/PHM.0000000000002550
- Lo HH, Zhu M, Zou Z, et al. Immersive and nonimmersive virtual reality-assisted active training in chronic musculoskeletal pain: Systematic review and meta-analysis. Med Internet Res. 2024;26:e48787. doi: 10.2196/48787
- Nicholas M, Vlaeyen JW, Rief W, et al.; IASP Taskforce for the Classification of Chronic Pain. The IASP classification of chronic pain for ICD-11: Chronic primary pain. Pain. 2019;160(1):28–37. doi: 10.1097/j.pain.0000000000001390
- Van Bogaert W, Coppieters I, Kregel J, et al. Influence of baseline kinesiophobia levels on treatment outcome in people with chronic spinal pain. Phys Ther. 2021;101(6):pzab076. doi: 10.1093/ptj/pzab076.6145902
- Maddox T, Sparks CY, Oldstone L, et al. Perspective: the promise of virtual reality as an immersive therapeutic. J Med Ext Real. 2024;1(1):13–20. doi: 10.1089/jmxr.2023.0003
- Guo Q, Zhang L, Gui C, et al. Virtual reality intervention for patients with neck pain: Systematic review and meta-analysis of randomized controlled trials. J Med Internet Res. 2023;25:e38256. doi: 10.2196/38256
- Kantha P, Lin J, Hsu W. The effects of interactive virtual reality in patients with chronic musculoskeletal disorders: A systematic review and meta-analysis. Games Health J. 2023;12(1):1–12. doi: 10.1089/g4h.2022.0088
- Brea-Gómez B, Laguna-González A, Pérez-Gisbert L, et al. Virtual reality based rehabilitation in adults with chronic neck pain: A systematic review and meta-analysis of randomized clinical trials. Virtual Real. 2024;28(2):1–31. doi: 10.1007/s10055-024-00979-0
- Simons LE, Hess CW, Choate ES, et al. Virtual reality-augmented physiotherapy for chronic pain in youth: Protocol for a randomized controlled trial enhanced with a single-case experimental design. JMIR Res Protoc. 2022;11:e40705. doi: 10.2196/40705
- Neiman NR, Falkson SR, Rodriguez ST, et al. Quantifying virtual reality pain modulation in healthy volunteers: A randomized, crossover study. J Clin Anesth. 2022;80:110876. doi: 10.1016/j.jclinane.2022.110876
- Senarath ID, Chen KK, Weerasekara I, de Zoete RM. Exercise-induced hypoalgesic effects of different types of physical exercise in individuals with neck pain: A systematic review and meta-analysis. Pain Pract. 2023;23(1):110–122. doi: 10.1111/papr.13150
- Shahmoradi L, Rezayi S. Cognitive rehabilitation in people with autism spectrum disorder: A systematic review of emerging virtual reality-based approaches. J Neuroeng Rehabil. 2022;19(1):91. doi: 10.1186/s12984-022-01069-5
- Moulaei K, Bahaadinbeigy K, Haghdoostd A, et al. An analysis of clinical outcomes and essential parameters for designing effective games for upper limb rehabilitation: A scoping review. Health Sci Rep. 2023;6(5):e1255. doi: 10.1002/hsr2.1255
- Yang JG, Thapa N, Park HJ, et al. Virtual reality and exercise training enhance brain, cognitive, and physical health in older adults with mild cognitive impairment. Int J Environ Res Public Health. 2022;19(20):13300. doi: 10.3390/ijerph192013300
- Moulaei K, Sheikhtaheri A, Haghdoost A, et al. Efficacy of virtual reality-based training programs and games on the improvement of cognitive disorders in patients: A systematic review and meta-analysis. BMC Psychiatry. 2024;24(1):116. doi: 10.1186/s12888-024-05563-z
- Liu Z, He Z, Yuan J, et al. Application of immersive virtual-reality-based puzzle games in elderly patients with post-stroke cognitive impairment: A pilot study. Brain Sci. 2022;13(1):79. doi: 10.3390/brainsci13010079
- Serafin S, Adjorlu A, Percy-Smith LM. A review of virtual reality for individuals with hearing impairments. Multimodal Technol Interact. 2023;7(4):36. doi: 10.3390/mti7040036
- Van ‘t Wout-Frank M, Arulpragasam AR, Faucher C, et al. Virtual reality and transcranial direct current stimulation for posttraumatic stress disorder: A randomized clinical trial. JAMA Psychiatry. 2024;81(5):437–446. doi: 10.1001/jamapsychiatry.2023.5661
- Schnurr PP, Hamblen JL, Wolf J, et al. The management of posttraumatic stress disorder and acute stress disorder: Synopsis of the 2023 U.S. Department of veterans affairs and U.S. Department of defense clinical practice guideline. Ann Intern Med. 2024;177(3):363–374. doi: 10.7326/M23-2757
- Van ‘t Wout M, Longo SM, Reddy MK, et al. Transcranial direct current stimulation may modulate extinction memory in posttraumatic stress disorder. Brain Behav. 2017;7(5):e00681. doi: 10.1002/brb3.681
- Philip NS, Brettler K, Greenberg BD, et al. One year clinical outcomes after transcranial direct current stimulation and virtual reality for posttraumatic stress disorder. Brain Stimul. 2024;17(4):896–898. doi: 10.1016/j.brs.2024.07.016
- Madore MR, Kozel FA, Williams LM, et al. Prefrontal transcranial magnetic stimulation for depression in US military veterans: A naturalistic cohort study in the veterans health administration. J Affect Disord. 2022;297:671–678. doi: 10.1016/j.jad.2021.10.025
- Patsaki I, Avgeri V, Rigoulia T, et al. Benefits from incorporating virtual reality in pulmonary rehabilitation of COPD patients: A systematic review and meta-analysis. Adv Respir Med. 2023;91(4):324–336. doi: 10.3390/arm91040026
- Czech O, Matkowski R, Skórniak J, Malicka I. Psychological and physical well-being in women diagnosed with breast cancer: A comprehensive study of anxiety, depression, sleep quality, physical activity, and sociodemographic factors. Med Sci Monit. 2024;30:e943490. doi: 10.12659/MSM.943490
- Sun M, Liu C, Lu Y, et al. Effects of physical activity on quality of life, anxiety and depression in breast cancer survivors: A systematic review and meta-analysis. Asian Nurs Res (Korean Soc Nurs Sci). 2023;17(5):276–285. doi: 10.1016/j.anr.2023.11.001
- Czech O, Kowaluk A, Ściepuro T, et al. Effects of immersive virtual therapy as a method supporting the psychological and physical well-being of women with a breast cancer diagnosis: A randomized rial. Curr Oncol. 2024;31(10):6419–6432. doi: 10.3390/curroncol31100477
- Micheluzzi V, Burrai F, Casula M, et al. Effectiveness of virtual reality on pain and anxiety in patients undergoing cardiac procedures: A systematic review and meta-analysis of randomized controlled trials. Curr Probl Cardiol. 2024;49(5):102532. doi: 10.1016/j.cpcardiol.2024.102532
- Rutkowski S, Bogacz K, Czech O, et al. Effectiveness of an inpatient virtual reality-based pulmonary rehabilitation program among COVID-19 patients on symptoms of anxiety, depression and quality of life: Preliminary results from a randomized controlled trial. Int J Environ Res Public Health. 2022;19(24):16980. doi: 10.3390/ijerph192416980
Supplementary files
