Progressive resistance power training for gait and balance rehabilitation in multiple sclerosis: a pilot single-arm study

Cover Page

Cite item

Full Text

Abstract

Background: Progressive resistance training (PRT) has been recognized as an effective rehabilitation tool for people with multiple sclerosis (pwMS), leading to increased muscle strength and improvements a gait, balance. However, still little is known about the effectiveness of muscle power training on gait and balance.

Aims: The aim of the study was to evaluate the effectiveness of 4-weeks inpatient power training protocol on parameters of gait and balance in pwMS.

Materials and methods: 26 subjects aged 18–65 years and Expanded Disability Status Scale (EDSS) score 2.0 to 6.5& Receiving standard rehabilitation with PRT was applied for 30 minutes, 5 days a week for 4 weeks in addition to other rehabilitation methods. The primary endpoint was the time of 6-minute walking test (6MWT) at week 4 (W4) compared to week 1 (W1). Secondary outcomes included the time in Timed 25-foot walking test (T25FW), Timed Up-n-Go test (TUG), 5 times sit-to-stand test (5TSST), Expanded Disability Status Scale Score (EDSS), muscle strength.

Results: After the 4-week course of rehabilitation a significant improvement was reached in all tests. The most prominent was the improvement in the 6MWT with 20/25 (80%) patients showing the increase in the distance walked above the minimal clinically important difference (MCID). Changes in other tests were less manifest: 3/25 (12%) of patients improved above MCID in both TUG and 5TSST, 6/25 (24%) patients — in T25FW. After a 4-week course of rehabilitation, a significant improvement was acquired in the 6MWT. Changes in other tests were significantly less manifest. Muscle in hip flexors improved significantly on the left side: mean (SD) at W1 — 3,96 (0,67) vs W4 — 4,72 (0,46; p=0,04), and showed the trend to significance of the right side: W1 — 3,68 (0,8); W4 — 4,52 (0,65), p=0,08.

Conclusions: The most significant effect was achieved in the primary outcome that was the distance walked in 6MWT. Less disabled patients can show better improvement in further studies, as was defined by T25FW test. Regular exercise can improve daily activity using a program that patients can easily do at home on their own.

About the authors

Kseniia V. Voinova

City Clinical Hospital No. 31

Author for correspondence.
Email: ksuha.voinova@bk.ru
ORCID iD: 0000-0002-7333-4963

St. Petersburg City Center of Multiple Sclerosis

Russian Federation, 3 Dinamo avenue, Saint-Petersburg, 197110

Gleb S. Makshakov

City Clinical Hospital No. 31

Email: g.makshakov@centrems.com
ORCID iD: 0000-0001-6831-0441
SPIN-code: 1822-7896

MD, Cand. Sci. (Med.), St. Petersburg City Center of Multiple Sclerosis

Russian Federation, 3 Dinamo avenue, Saint-Petersburg, 197110

Evgeniy P. Evdoshenko

City Clinical Hospital No. 31

Email: e.evdoshenko@centrems.com
ORCID iD: 0000-0002-8006-237X
SPIN-code: 7065-5195

MD, Cand. Sci. (Med.), St. Petersburg City Center of Multiple Sclerosis

Russian Federation, 3 Dinamo avenue, Saint-Petersburg, 197110

References

  1. Armstrong L, Winant D, Swasey P, et al. Using isokinetic dynamometry to test ambulatory patients with multiple sclerosis. Phys Ther. 1983;63(8):1274–1279. doi: 10.1093/ptj/63.8.1274
  2. Lambert C, Archer R, Evans W. Muscle strength and fatigue during isokinetic exercise in individuals with multiple sclerosis. Med Sci Sports Exercise. 2001;33(10):1613–1619. doi: 10.1097/00005768-200110000-00001
  3. Sosnoff J, Gappmaier E, Frame A, Motl R. Influence of spasticity on mobility and balance in persons with multiple sclerosis. J Neu Phys Ther. 2011;35(3):129–132. doi: 10.1097/npt.0b013e31822a8c40
  4. Cattaneo D, de Nuzzo C, Fascia T, et al. Risks of falls in subjects with multiple sclerosis. Arch Phys Med Rehabil. 2002;83(6):864–867. doi: 10.1053/apmr.2002.32825
  5. Grigoriadis N, Bakirtzis C, Politis C, et al. A health 4.0 based approach towards the management of multiple sclerosis. In: Health 4.0: How virtualization and big data are revolutionizing healthcare. 2017. Р. 205–218. doi: 10.1007/978-3-319-47617-9_10
  6. De Haan A, de Ruiter C, van der Woude L, Jongen P. Contractile properties and fatigue of quadriceps muscles in multiple sclerosis. Muscle Nerve. 2000;23(10):1534–1541. doi: 10.1002/1097-4598(200010)23:10<1534::aid-mus9>3.0.co;2-d
  7. Rice C, Vollmer T, Bigland-Ritchie B. Neuromuscular responses of patients with multiple sclerosis. Muscle Nerve. 1992;15(10):1123–1132. doi: 10.1002/mus.880151011
  8. Van der Feen F, de Haan G, van der Lijn I, et al. Independent outdoor mobility of persons with multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2020;37: 101463. doi: 10.1016/j.msard.2019.101463
  9. Schwid S, Thornton C, Pandya S, et al. Quantitative assessment of motor fatigue and strength in MS. Neurology. 1999;53(4):743–743. doi: 10.1212/wnl.53.4.743
  10. Thoumie P, Lamotte D, Cantalloube S, et al. Motor determinants of gait in 100 ambulatory patients with multiple sclerosis. Multiple Sclerosis J. 2005;11(4):485–491. doi: 10.1191/1352458505ms1176oa
  11. Morris M. Changes in gait and fatigue from morning to afternoon in people with multiple sclerosis. J Neurol Neurosurg Psych. 2002;72(3):361–365. doi: 10.1136/jnnp.72.3.361
  12. Ng A, Miller R, Gelinas D, Kent-Braun J. Functional relationships of central and peripheral muscle alterations in multiple sclerosis. Muscle Nerve. 2004;29(6):843–852. doi: 10.1002/mus.20038
  13. Scott S, Hughes A, Galloway S, Hunter A. Surface EMG characteristics of people with multiple sclerosis during static contractions of the knee extensors. Clin Physiol Funct Imaging. 2010;31(1):11–17. doi: 10.1111/j.1475-097x.2010.00972.x
  14. Kjølhede T, Vissing K, de Place L, et al. Neuromuscular adaptations to long-term progressive resistance training translates to improved functional capacity for people with multiple sclerosis and is maintained at follow-up. Multiple Sclerosis J. 2014;21(5):599–611. doi: 10.1177/1352458514549402
  15. Kjølhede T, Vissing K, Dalgas U. Multiple sclerosis and progressive resistance training: a systematic review. Multiple Sclerosis J. 2012;18(9):1215–1228. doi: 10.1177/1352458512437418
  16. Gehlsen G, Grigsby S, Winant D. Effects of an aquatic fitness program on the muscular strength and endurance of patients with multiple sclerosis. Phys Ther. 1984;64(5): 653–657. doi: 10.1093/ptj/64.5.653
  17. Broekmans T, Roelants M, Feys P, et al. Effects of long-term resistance training and simultaneous electro-stimulation on muscle strength and functional mobility in multiple sclerosis. Multiple Sclerosis J. 2010;17(4):468–477. doi: 10.1177/1352458510391339
  18. Mostert S, Kesselring J. Effects of a short-term exercise training program on aerobic fitness, fatigue, health perception and activity level of subjects with multiple sclerosis. Multiple Sclerosis J. 2002;8(2):161–168. doi: 10.1191/1352458502ms779oa
  19. De Bolt L, McCubbin J. The effects of home-based resistance exercise on balance, power, and mobility in adults with multiple sclerosis. Arch Phys Med Rehab. 2004;85(2): 290–297. doi: 10.1016/j.apmr.2003.06.003
  20. Gutierrez G, Chow J, Tillman M, et al. Resistance training improves gait kinematics in persons with multiple sclerosis. Arch Phys Med Rehabil. 2005;86(9):1824–1829. doi: 10.1016/j.apmr.2005.04.008
  21. Han L, Yang F. Strength or power, which is more important to prevent slip-related falls? Hum Mov Sci. 2015;44: 192–200. doi: 10.1016/j.humov.2015.09.001
  22. American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670
  23. Baert I, Freeman J, Smedal T, et al. Responsiveness and clinically meaningful improvement, according to disability level, of five walking measures after rehabilitation in multiple sclerosis. Neurorehab Neural Repair. 2014;28(7): 621–631. doi: 10.1177/1545968314521010
  24. Hobart J, Blight A, Goodman A, et al. Timed 25-Foot Walk: direct evidence that improving 20% or greater is clinically meaningful in MS. Neurology. 2013;80(16):1509–1517. doi: 10.1212/wnl.0b013e31828cf7f3
  25. Nilsagard Y, Lundholm C, Gunnarsson L, Denison E. Clinical relevance using timed walk tests and ‘timed up and go’ testing in persons with multiple sclerosis. Phys Res Int. 2007;12(2):105–114. doi: 10.1002/pri.358
  26. Jensen H, Mamoei S, Ravnborg M, et al. Distribution-based estimates of minimum clinically important difference in cognition, arm function and lower body function after slow release-fampridine treatment of patients with multiple sclerosis. Mult Scler Relat Disord. 2016;7:58–60. doi: 10.1016/j.msard.2016.03.007
  27. Kerling A, Keweloh K, Tegtbur U, et al. Physical capacity and quality of life in patients with multiple sclerosis. Neuro Rehab. 2014;35(1):97–104. doi: 10.3233/nre-141099
  28. Kent-Braun J, Ng A, Castro M, et al. Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. J Appl Physiol. 1997;83(6):1998–2004. doi: 10.1152/jappl.1997.83.6.1998
  29. Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehab. 2015; 96(7):1339–1348.e7. doi: 10.1016/j.apmr.2015.02.011
  30. Jørgensen M, Dalgas U, Wens I, Hvid L. Muscle strength and power in persons with multiple sclerosis: a systematic review and meta-analysis. J Neurol Sci. 2017;376:225–241. doi: 10.1016/j.jns.2017.03.022
  31. Cruickshank T, Reyes A, Ziman M. A systematic review and meta-analysis of strength training in individuals with multiple sclerosis or parkinson disease. Medicine (Baltimore). 2015;94(4):e411. doi: 10.1097/md.0000000000000411
  32. Latimer-Cheung A, Pilutti L, Hicks A, et al. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development. Arch Phys Med Rehab. 2013;94(9):1800–1828.e3. doi: 10.1016/j.apmr.2013.04.020
  33. Snook E, Motl R. Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis. Neurorehab Neural Repair. 2008;23(2):108–116. doi: 10.1177/1545968308320641
  34. Rietberg M, Brooks D, Uitdehaag B, Kwakkel G. Exercise therapy for multiple sclerosis. Cochr Datab Syst Rev. 2005. doi: 10.1002/14651858.cd003980.pub2
  35. Miszko TA, Cress ME, Slade JM, et al. Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2003; 58(2):171–175. doi: 10.1093/gerona/58.2.m171
  36. Marsh A, Miller M, Rejeski W, et al. Lower extremity muscle function after strength or power training in older adults. J Aging Phys Act. 2009;17(4):416–443. doi: 10.1123/japa.17.4.416
  37. Van Vulpen LF, de Groot S, Rameckers E, et al. Improved walking capacity and muscle strength after functional power-training in young children with cerebral palsy. Neurorehab Neural Repair. 2017;31(9):827–841. doi: 10.1177/1545968317723750
  38. Hansen D, Feys P, Wens I, Eijnde B. Is walking capacity in subjects with multiple sclerosis primarily related to muscle oxidative capacity or maximal muscle strength? A pilot study. Mult Scler Int. 2014;2014:1–7. doi: 10.1155/2014/759030
  39. Stellmann J, Neuhaus A, Götze N, et al. Ecological validity of walking capacity tests in multiple sclerosis. PLoS One. 2015;10(4):e0123822. doi: 10.1371/journal.pone.0123822
  40. Shepherd S, Cocks M, Tipton K, et al. Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males. Exp Physiol. 2014;99(6):894–908. doi: 10.1113/expphysiol.2014.078014
  41. Porter C, Reidy P, Bhattarai N, et al. Resistance exercise training alters mitochondrial function in human skeletal muscle. Med Sci Sports Exercise. 2015;47(9):1922–1931. doi: 10.1249/mss.0000000000000605
  42. Tang J, Hartman J, Phillips S. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Phys Nutr Metab. 2006; 31(5):495–501. doi: 10.1139/h06-026
  43. Nakamura R, Hosokawa T, Tsuji I. Relationship of muscle strength for knee extension to walking capacity in patients with spastic hemiparesis. Tohoku J Exp Med. 1985; 145(3):335–340. doi: 10.1620/tjem.145.335
  44. Hunnicutt JL, Aaron SE, Embry AE, et al. The effects of POWER Training in Young and Older Adults after Stroke. Stroke Res Treat. 2016;2016:7316250. doi: 10.1155/2016/7316250

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.

Download (1MB)

Copyright (c) 2021 Voinova K.V., Makshakov G.S., Evdoshenko E.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».