HLA and Cancer

Cover Page

Cite item

Full Text

Abstract

This review provides updated information on HLA class I and II antigens in cancer. The expression of HLA antigens in normal and tumor tissues, the physiological organization of the components of HLA antigen-processing machinery, the expression patterns of HLA antigens associated with the molecular and regulatory defects identified to date, as well as their functional and clinical significance, are described. This review summarizes clinical and experimental data on the complexity of immune escape mechanisms used by tumour cells to avoid T and natural killer cell responses. The variety of class I HLA phenotypes that can be produced by tumor cells during this process is presented. We also discuss here the potential capacity of metastatic lesions to recover MHC/HLA class I expression after immunotherapy, which depends on the reversible/soft or irreversible/hard nature of the molecular mechanism responsible for the altered HLA class I phenotypes, and which determines the progression or regression of metastatic lesions in response to treatment. HLA сlass II genes play key roles in connecting innate and adaptive immunity in tumor rejection and when the escape route via HLA I is already established. Antigens сlass II HLA expression in tumor cells and gives tumor cells the ability to present antigens, becoming less aggressive, and improves prognosis. Malignant tumors, as a genetic disease, are caused by structural alterations of the genome which can give rise to the expression of tumor-associated antigens in the form of either structurally altered molecules or of overexpressed normal molecules. Tumor associated antigens recognized by the immune system and induce a T-cell-mediated immune response. Outgrowing cancers use different strategies to evade destruction by the immune system. Immune evasion mechanisms affecting the expression and/or function of HLA-antigens are of special interest to tumor immunologists, since these molecules play a crucial role in the interaction of malignant cells with immune cells. This review describes the potential role of immunity control points in immunosuppression and therapeutic strategies for restoring the cytotoxicity of immune cells.

About the authors

Tatyana A. Kamilova

Saint Petersburg City Hospital No 40

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biol.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Aleksandr S. Golota

Saint Petersburg City Hospital No 40

Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Dmitry A. Vologzhanin

Saint Petersburg City Hospital No 40; Saint Petersburg State University

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk; Saint Petersburg

Olga V. Shneider

Saint Petersburg City Hospital No 40

Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-code: 8405-1051

MD, Cand. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Sergey G. Sсherbak

Saint Petersburg City Hospital No 40; Saint Petersburg State University

Author for correspondence.
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822

MD, Dr. Sci. (Med.), Professor

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk; Saint Petersburg

References

  1. Foroni I, Rita Couto A, Bettencourt BF, et al. HLA-E, HLA-F and HLA-G — the non-classical side of the MHC cluster. HLA and associated important diseases. Ed. Yongzhi Xi; 2014. P. 61–109.
  2. Zhong C, Cozen W, Bolanos R, et al. The role of HLA variation in lymphoma aetiology and survival. J Intern Med. 2019;286(2):154–180. doi: 10.1111/joim.12911
  3. Torres MI, Palomeque T, Lorite P. HLA in gastrointestinal inflammatory disorders. HLA and associated important diseases. Ed. Yongzhi Xi, 2014. P. 223–246.
  4. Robinson J, Barker DJ, Georgiou X, et al. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020;48(D1):D948–D955. doi: 10.1093/nar/gkz950
  5. Robinson J, Halliwell JA, Hayhurst JD, et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 2015;43(Database issue):D423–431. doi: 10.1093/nar/gku1161
  6. Kiyotani K, Mai TH, Nakamura Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. J Hum Genet. 2017;62(3):397–405. doi: 10.1038/jhg.2016.141
  7. Dias FC, Castelli EC, Collares CV, et al. The role of HLA-G molecule and HLA-G gene polymorphisms in tumors, viral hepatitis, and parasitic diseases. Front Immunol. 2015;6:9. doi: 10.3389/fimmu.2015.00009
  8. Chowell D, Morris LG, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science. 2018;359(6375):582–587. doi: 10.1126/science.aao4572
  9. Perea F, Bernal M, Sanchez-Palencia A, et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int J Cancer. 2017;140(4):888–899. doi: 10.1002/ijc.30489
  10. Kunimasa K, Goto T. Immunosurveillance and immunoediting of lung cancer: current perspectives and challenges. Int J Mol Sci. 2020;21(2):597. doi: 10.3390/ijms21020597
  11. Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol. 2018;51:123–132. doi: 10.1016/j.coi.2018.03.006
  12. McGranahan N, Swanton C. Cancer evolution constrained by the immune microenvironment. Cell. 2017;170(5): 825–827. doi: 10.1016/j.cell.2017.08.012
  13. Garrido F, Aptsiauri N. Cancer immune escape: MHC expression in primary tumours versus metastases. Immunology. 2019b;158(4):255–266. doi: 10.1111/imm.13114
  14. Garrido F, Perea F, Bernal M, Sánchez-Palencia A. The escape of cancer from T cell-mediated immune surveillance: HLA сlass I loss and tumor tissue architecture. Vaccines. 2017;5(1):7. doi: 10.3390/vaccines5010007
  15. Garrido F, Ruiz-Cabello F, Aptsiauri N. Rejection versus escape: the tumor MHC dilemma. Cancer Immunol Immunother. 2017;66(2):259–271. doi: 10.1007/s00262-016-1947-x
  16. Najafimehr H, Hajizadeh N, Nazemalhosseini-Mojarad E, et al. The role of Human leukocyte antigen class I on patient survival in Gastrointestinal cancers: a systematic review and meta- analysis. Sci Rep. 2020;10(1):728. doi: 10.1038/s41598-020-57582-x
  17. Angell TE, Lechner MG, Jang JK, et al. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res. 2014;20(23): 6034–6044. doi: 10.1158/1078-0432.CCR-14-0879
  18. Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. PNAS USA. 2016;113(21):5999–6004. doi: 10.1073/pnas.1602069113
  19. Sucker A, Zhao F, Real B, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20(24):6593–6604. doi: 10.1158/1078-0432.CCR-14-0567
  20. Garrido G, Rabasa A, Garrido C, et al. Upregulation of HLA Class I expression on tumor cells by the anti-EGFR antibody nimotuzumab. Front Pharmacol. 2017;8:595. doi: 10.3389/fphar.2017.00595
  21. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–829. doi: 10.1056/NEJMoa1604958
  22. Sucker A, Zhao F, Pieper N, et al. Acquired IFN-γ resistance impairs anti-tumor immunity and gives rise to T-cell-resistance melanoma lesions. Nat Commun. 2017;8:15440. doi: 10.1038/ncomms15440
  23. Rölle A, Jäger D, Momburg F. HLA-E peptide repertoire and dimorphism-centerpieces in the adaptive NK cell puzzle? Front Immunol. 2018;9:2410. doi: 10.3389/fimmu.2018.02410
  24. Zhang Y, Yu S, Han Y, et al. Human leukocyte antigen-G expression and polymorphisms promote cancer development and guide cancer diagnosis/treatment. Oncol Lett. 2018;15(1):699–709. doi: 10.3892/ol.2017.7407
  25. Klippel ZK, Chou J, Towlerton AM, et al. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther. 2014;21(3):337–342. doi: 10.1038/gt.2013.87
  26. Alkhouly N, Shehata I, Ahmed MB, et al. HLA-G expression in acute lymphoblastic leukemia: a significant prognostic tumor biomarker. Med Oncol. 2013;30(1):460. doi: 10.1007/s12032-013-0460-8
  27. Murdaca G, Calamaro P, Lantieri F, et al. HLA-G expression in gastric carcinoma: clinicopathological correlations and prognostic impact. Virchows Archiv. 2018;473(4): 425–433. doi: 10.1007/s00428-018-2379-0
  28. Ben Amor A, Beauchemin K, Faucher MC, et al. Human leukocyte antigen G polymorphism and expression are associated with an increased risk of non-small-cell lung cancer and advanced disease stage. PLoS One. 2016;11(8):e0161210. doi: 10.1371/journal.pone.0161210
  29. Eugène J, Jouand N, Ducoin K, et al. The inhibitory receptor CD94/NKG2A on CD8+ tumor-infiltrating lymphocytes in colorectal cancer: a promising new druggable immune checkpoint in the context of HLAE/β2m overexpression. Mod Pathol. 2020;33(3):468–482. doi: 10.1038/s41379-019-0322-9
  30. Godfrey DI, Le Nours J, Andrews DM, et al. Unconventional T cell targets for cancer immunotherapy. Immunity. 2018;48(3):453–473. doi: 10.1016/j.immuni.2018.03.009
  31. Unanue ER, Turk V, Neefjes J. Variations in MHC class II antigen processing and presentation in health and disease. Annu Rev Immunol. 2016;34:265–297. doi: 10.1146/annurev-immunol-041015-055420
  32. Couture A, Garnier A, Docagne F, et al. HLA-class II artificial antigen presenting cells in CD4+ T cell-based immunotherapy. Front Immunol. 2019;10:1081. doi: 10.3389/fimmu.2019.01081
  33. Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology. 2017;6(2):e1171447. doi: 10.1080/2162402X.2016.1171447
  34. Anczurowski M, Hirano N. Mechanisms of HLA-DP antigen processing and presentation revisited. Trends Immunol. 2018;39(12):960–964. doi: 10.1016/j.it.2018.10.008
  35. Garrido F. HLA Class-II expression in human tumors. Adv Exp Med Biol. 2019;1151:91–95. doi: 10.1007/978-3-030-17864-2_4
  36. Perea F, Sánchez-Palencia A, Gómez-Morales M, et al. HLA class I loss and PD-L1 expression in lung cancer: impact on T-cell infiltration and immune escape. Oncotarget. 2018;9(3):4120–4133. doi: 10.18632/oncotarget.23469
  37. Yamashita, Y, Anczurowski M, Nakatsugawa M, et al. HLA-DP(84Gly) constitutively presents endogenous peptides generated by the class I antigen processing pathway. Nat Commun. 2017;8:15244. doi: 10.1038/ncomms15244
  38. Samie M, Cresswell P. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen–presentation pathways. Nat Immunol. 2015;16(7):729–736. doi: 10.1038/ni.3196
  39. Lee CY, Wang D, Wilhelm M, et al. Mining the human tissue proteome for protein citrullination. Mol Cell Proteomics. 2018;17(7):1378–1391. doi: 10.1074/mcp.RA118.000696
  40. Brentville VA, Vankemmelbeke M, Metheringham RL, Durrant LG. Post-translational modifications such as citrullination are excellent targets for cancer therapy. Semin Immunol. 2020;47:101393. doi: 10.1016/j.smim.2020.101393
  41. Hu JM, Li L, Chen YZ, et al. HLA-DRB1 and HLA-DQB1 methylation changes promote the occurrence and progression of Kazakh ESCC. Epigenetics. 2014;9(10):1366–1373. doi: 10.4161/15592294.2014.969625
  42. Leite FA, Lira RC, Fedatto PF, et al. Low expression of HLA-DRA, HLA-DPA1, and HLA-DPB1 is associated with poor prognosis in pediatric adrenocortical tumors (ACT). Pediatr Blood Cancer. 2014;61(11):1940–1948. doi: 10.1002/pbc.25118
  43. Ramia E, Chiaravalli AM, Bou Nasser Eddine F, et al. CIITA-related block of HLA class II expression, upregulation of HLA class I, and heterogeneous expression of immune checkpoints in hepatocarcinomas: implications for new therapeutic approaches. Oncoimmunology. 2018; 8(3):1548243. doi: 10.1080/2162402X.2018.1548243
  44. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases–elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25. doi: 10.1016/j.coi.2014.01.004
  45. Surmann EM, Voigt AY, Michel S, et al. Association of high CD4-positive T cell infiltration with mutations in HLA class II-regulatory genes in microsatellite-unstable colorectal cancer. Cancer Immunol Immunother. 2014;64(3): 357–366. doi: 10.1007/s00262-014-1638-4
  46. Zanetti M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J Immunol. 2015;194(5):2049–2056. doi: 10.4049/jimmunol.1402669
  47. Grobner S, Worst BC, Weischenfeldt J, et al. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–327. doi: 10.1038/nature25480
  48. Quaranta V, Schmid MC. Macrophage-mediated subversion of anti-tumour immunity. Cells. 2019;8(7):747. doi: 10.3390/cells8070747
  49. Pesce S, Greppi M, Grossi F, et al. PD/1-PD-Ls checkpoint: insight on the potential role of NK cells. Front Immunol. 2019;10:1242. doi: 10.3389/fimmu.2019.01242
  50. Roudko V, Greenbaum B, Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens. Front Immunol. 2020;11:27. doi: 10.3389/fimmu.2020.00027
  51. Saigi M, Alburquerque-Bejar JJ, Sanchez-Cespedes M. Determinants of immunological evasion and immunocheckpoint inhibition response in non-small cell lung cancer: the genetic front. Oncogene. 2019;38(31):5921–5932. doi: 10.1038/s41388-019-0855-x
  52. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19): 1823–1833. doi: 10.1056/NEJMoa1606774
  53. Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-smallcell lung cancer. N Engl J Med. 2018;379(21):2040–2051. doi: 10.1056/NEJMoa1810865
  54. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–2092. doi: 10.1056/NEJMoa1801005
  55. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–2940. doi: 10.1172/JCI91190
  56. Kok VC. Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck cancer. Front Oncol. 2020;10:268. doi: 10.3389/fonc.2020.00268
  57. Borst J, Ahrends T, Babała N, et al. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18(10):635–647. doi: 10.1038/s41577-018-0044-0
  58. Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+) T cell memory. Nat Rev Immunol. 2016;16(2):102–111. doi: 10.1038/nri.2015.10
  59. Lu YC, Parker LL, Lu T, et al. Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol. 2017;35(29): 3322–3329. doi: 10.1200/JCO.2017.74.5463
  60. Mennonna D, Maccalli C, Romano MC, et al. T cell neoepitope discovery in colorectal cancer by high throughput profiling of somatic mutations in expressed genes. Gut. 2017;66(3):454–463. doi: 10.1136/gutjnl-2015-309453
  61. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. doi: 10.1126/science.aaa4971
  62. Ott PA, Hu Z, Keskin DB, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–221. doi: 10.1038/nature22991
  63. Vacca P, Pietra G, Tumino N, et al. Exploiting human NK cells in tumor therapy. Front Immunol. 2020;10:3013. doi: 10.3389/fimmu.2019.03013
  64. Liu LL, Béziat V, Oei VY, et al. Ex vivo expanded adaptive NK cells effectively kill primary acute lymphoblastic leukemia cells. Cancer Immunol Res. 2017;5(8):654–665. doi: 10.1158/2326-6066.CIR-16-0296
  65. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218. doi: 10.1038/s41573-018-0007-y
  66. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–108. doi: 10.1158/2159-8290.CD-18-0367
  67. Trefny MP, Kaiser M, Stanczak MA, et al. PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade. Cancer Immunol Immunother. 2020;69(8):1505–1517. doi: 10.1007/s00262-020-02558-z
  68. Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362(6411):eaar3593. doi: 10.1126/science.aar3593
  69. Pereira C, Gimenez-Xavier P, Pros E, et al. Genomic profiling of patient-derived xenografts for lung cancer identifies B2m inactivation impairing immunorecognition. Clin Cancer Res. 2017;23(12):3203–3213. doi: 10.1158/1078-0432.CCR-16-1946
  70. Ledford H. Melanoma drug wins US approval. Nature. 2011;471(7340):561. doi: 10.1038/471561a
  71. Simsek M, Tekin SB, Bilici M. Immunological agents used in cancer treatment. Eurasian J Med. 2019;51(1):90–94. doi: 10.5152/eurasianjmed.2018.18194
  72. Antonia SJ, Villegas A, Daniel D, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–2350. doi: 10.1056/NEJMoa1809697
  73. Munari E, Zamboni G, Sighele G, et al. Expression of programmed cell death ligand 1 in non-small cell lung cancer: comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathol. 2019;127(1):52–61. doi: 10.1002/cncy.22083
  74. Force J, Leal JH, McArthur HL. Checkpoint blockade strategies in the treatment of breast cancer: where we are and where we are heading. Curr Treat Options Oncol. 2019;20(4):35. doi: 10.1007/s11864-019-0634-5
  75. Hammers HJ, Plimack ER, Infante JR, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the checkmate 016 study. J Clin Oncol. 2017;35(34):3851–3858. doi: 10.1200/JCO.2016.72.1985
  76. Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–2104. doi: 10.1056/NEJMoa1801946
  77. Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma. (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19(11):1480–492. doi: 10.1016/S1470-2045(18)30700-9
  78. Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–16837. doi: 10.1002/jcp.28358
  79. Tang F, Zheng P. Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci. 2018;8:34. doi: 10.1186/s13578-018-0232-4
  80. Takamori S, Takada K, Toyokawa G, et al. PD-L2 expression as a potential predictive biomarker for the response to anti-PD-1 drugs in patients with non-small cell lung cancer. Anticancer Res. 2018;38(10):5897–5901. doi: 10.21873/anticanres.12933
  81. Nishikawa H, Tanegashima T, Togashi Y, et al. Immune suppression by PD-L2 against spontaneous and treatment-related antitumor immunity. Clin Cancer Res. 2019;25(15): 4808–4819. doi: 10.1158/1078-0432.CCR-18-3991
  82. Andre P, Denis C, Soulas C, et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell. 2018;175(7): 1731–1743 doi: 10.1016/j.cell.2018.10.014
  83. Hsu J, Hodgins JJ, Marathe M, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654–4668. doi: 10.1172/JCI99317
  84. Sim F, Leidner R, Bell RB. Immunotherapy for head and neck cancer. Oral Maxillofac Surg Clin North Am. 2019;31(1):85–100. doi: 10.1016/j.coms.2018.09.002
  85. Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Opin Immunol. 2018;51:146–153. doi: 10.1016/j.coi.2018.03.013
  86. Ingegnere T, Mariotti FR, Pelosi A, et al. Human CAR NK cells: a new non-viral method allowing high efficient transfection and strong tumor cell killing. Front Immunol. 2019;10:957. doi: 10.3389/fimmu.2019.00957
  87. Rezvani K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transpl. 2019;54(Suppl 2): 785–788. doi: 10.1038/s41409-019-0601-6
  88. Quintarelli C, Orlando D, Boffa I, et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology. 2018;7(6): e1433518. doi: 10.1080/2162402X.2018.1433518
  89. Sivori S, Meazza R, Quintarelli C, et al. NK cell-based immunotherapy for hematological malignancies. J Clin Med. 2019;8(10):E1702. doi: 10.3390/jcm8101702
  90. Pesce S, Squillario M, Greppi M, et al. New miRNA signature heralds human NK cell subsets at different maturation steps: involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 2018;9:2360. doi: 10.3389/fimmu.2018.02360
  91. Ashizawa M, Okayama H, Ishigame T, et al. microRNA-148a-3p regulates immunosuppression in DNA mismatch repair-deficient colorectal cancer by targeting PD-L1. Mol Cancer Res. 2019;17(6):1403–1413. doi: 10.1158/1541-7786.MCR-18-0831
  92. Gao L, Guo Q, Li X, Yang X, et al. MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. EBioMedicine. 2019;41:395–407. doi: 10.1016/j.ebiom.2019.02.034
  93. Gao Q, Liang WW, Foltz SM, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23(1):227–238. doi: 10.1016/j.celrep.2018.03.050
  94. Yang W, Lee K, Srivastava RM, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25 (5):767–775. doi: 10.1038/s41591-019-0434-2
  95. Samstein RM, Shoushtari AN, Hellmann MD, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nature Genet. 2019; 51(2):202–206. doi: 10.1038/s41588-018-0312-8
  96. Angelova M, Mlecnik B, Vasaturo A, et al. Evolution of metastases in space and time under immune selection. Cell. 2018;175(3):751–765. doi: 10.1016/j.cell.2018.09.018
  97. Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens generated by individual mutations and their role in cancer immunity and immunotherapy. Front Immunol. 2017;8:1679. doi: 10.3389/fimmu.2017.01679
  98. Rosenthal R, Cadieux EL, Salgado R, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567(6):479–85. doi: 10.1038/s41586-019-1032-7
  99. Roudko V, Bozkus CC, Orfanelli T, et al. Shared Immunogenic Poly-Epitope Frameshift Mutations in Microsatellite Unstable Tumors. Cell. 2020;183(6):1634–1649. doi: 10.1016/j.cell.2020.11.004
  100. Rosato PC, Wijeyesinghe S, Stolley JM, et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat Commun. 2019; 10(1):567. doi: 10.1038/s41467-019-08534-1
  101. Malaker SA, Penny SA, Steadman LG, et al. Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res. 2017;5(5): 376–384. doi: 10.1158/2326-6066.CIR-16-0280
  102. Raposo B, Merky P, Lundqvist C, et al. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat Commun. 2018;9(1):353. doi: 10.1038/s41467-017-02763-y
  103. Riaz N, Havel JJ, Makarov V, et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171(4):934–949. doi: 10.1016/j.cell.2017.09.028
  104. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19(3):133–150. doi: 10.1038/s41568-019-0116-x
  105. Yost KE, Satpathy AT, Wells DK, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. 2019;25(8):1251–1259. doi: 10.1101/648899
  106. Richman LP, Vonderheide RH, Rech AJ. Neoantigen dissimilarity to the self-proteome predicts immunogenicity and response to immune checkpoint blockade. Cell Syst. 2019;9(4):375–382. doi: 10.1016/j.cels.2019.08.009
  107. Santambrogio L, Berendam SJ, Engelhard VH. The antigen processing and presentation machinery in lymphatic endothelial cells. Front Immunol. 2019;10:1033. doi: 10.3389/fimmu.2019.01033
  108. Hammerich L, Marron TU, Upadhyay R, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25(5): 814–824. doi: 10.1038/s41591-019-0410-x
  109. Salmon H, Remark R, Gnjatic S, Merad M. Host tissue determinants of tumour immunity. Nat Rev Cancer. 2019;19(4):215–227 doi: 10.1038/s41568-019-0125-9
  110. Emerson R, Chapuis AG, Desmarais C, et al. Tracking the fate and origin of clinically relevant adoptively transferred CD8+ T cells in vivo. Sci Immunol. 2017;2(8):eaal2568. doi: 10.1126/sciimmunol.aal2568
  111. Yamaguchi N, Winter CM, Wu MF, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;9(6184): 641–646. doi: 10.1126/science.1251102
  112. Tran E, Robbins PF, Lu YC, et al. T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 2016;375(23):2255–2262. doi: 10.1056/NEJMoa1609279
  113. Balachandran VP, Luksza M, Zhao JN, et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017;551(7681):512–516. doi: 10.1038/nature24462
  114. Bräunlein E, Krackhardt AM. Identification and characterization of neoantigens as well as respective immune responses in cancer patients. Front Immunol. 2017;8: 1702. doi: 10.3389/fimmu.2017.01702
  115. Charoentong P, Angelova M, Charoentong P, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade: cell reports. Cell Rep. 2017;18(1):248–262. doi: 10.1016/j.celrep.2016.12.019
  116. Luksza M, Riaz N, Makarov V, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–520. doi: 10.1038/nature24473
  117. Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 2017; 18(8):1009–1021. doi: 10.1016/S1470-2045(17)30516-8
  118. Wood MA, Paralkar M, Paralkar MP, et al. Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer. 2018;18(1):414. doi: 10.1186/s12885-018-4325-6
  119. Zhang J, Caruso FP, Sa JK, et al. The combination of neoantigen quality and T lymphocyte infiltrates identifies glioblastomas with the longest survival. Commun Biol. 2019;2:135. doi: 10.1038/s42003-019-0369-7
  120. O’Donnell JS, Teng MW, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–167. doi: 10.1038/s41571-018-0142-8
  121. Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7(12):1420–1435. doi: 10.1158/2159-8290.CD-17-0593
  122. Shin DS, Zaretsky JM, Escuin-Ordinas H, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188–201. doi: 10.1158/2159-8290.CD-16-1223
  123. Gao J, Shi LZ, Zhao H, et al. Loss of IFNγ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167(2):397–404. doi: 10.1016/j.cell.2016.08.069
  124. Saigi M, Alburquerque-Bejar JJ, Mc Leer-Florin A, et al. MET-oncogenic and JAK2-Inactivating alterations are independent factors that affect regulation of PD-L1 expression in lung cancer. Clin Cancer Res. 2018;24(18): 4579–4587. doi: 10.1158/1078-0432.CCR-18-0267
  125. Sabari JK, Leonardi GC, Shu CA, Umeton R. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–2091. doi: 10.1093/annonc/mdy334
  126. Best SA, De Souza DP, Kersbergen A, et al. Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab. 2018;27(4):935–943. doi: 10.1016/j.cmet.2018.02.006
  127. Kerdidani D, Chouvardas P, Arjo AR, et al. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun. 2019;10(1):1405. doi: 10.1038/s41467-019-09370-z
  128. He Y, Cao J, Zhao C, et al. TIM-3, a promising target for cancer immunotherapy. Onco Targets Ther. 2018;11: 7005–7009. doi: 10.2147/OTT.S170385
  129. Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis. Lancet Respir Med. 2018;6(10): 771–781. doi: 10.1016/S2213-2600(18)30284-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kamilova T.A., Golota A.S., Vologzhanin D.A., Shneider O.V., Sсherbak S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».