Post-collisional molybdenum-porphyry mineralization in the middle Tien Shan: first isotopic U-Pb zircon data for rocks from the productive molo-sarychat pluton (Eastern Kyrgyzstan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the first isotopic U-Pb study data (LA-ICP-MS method) of zircon from intrusive rocks of the Molo-Sarychat pluton situated along the deep-seated fault system of the “Nikolaev Line” in the eastern Kyrgyzstan. The intrusive rocks from this pluton belong to the high-potassic calc-alkaline to shoshonitic series. Intense Mo(-W-Cu-Au) (mainly molybdenum-porphyry) mineralization is spatially and genetically associated with this pluton. Together with the other Au, W and Cu deposits and occurrences, this mineralization is part of the extended metallogenic belt of Tien Shan; however, occurrences of molybdenum-porphyry mineralization are still rare in this belt. The concordant isotopic U-Pb ages of zircon autocrysts indicate the crystallization of quartz monzonite (293.3±4.2 Ma) and monzogranite (286.6±2.4 Ma) in the Early Permian. Zircon antecrysts dated at 306-320 Ma are also present. The crystallization age obtained corresponds to a post-collisional epoch of the development of this territory but the presence of the antecrysts expands the pluton emplacement to the Late Carboniferous-Early Permian, which, as a result, spanned over initially subduction-related and then post-collisional tectonic settings. Correspondingly, a post-collisional setting of the Mo(-W-Cu-Au) (molybdenum-porphyry) mineralization is established; it is related to the pluton studied and was formed after the emplacement of quartz monzonite (early stage) and monzogranite (late stage). Significant enrichment in Mo can be related to its progressing accumulation during magmatic differentiation causing the emplacement of quartz monzonite and especially monzogranite. These processes occurred under the more mature post-collisional tectonic regime, with possible formation of intermediate magma chambers in the Paleoproterozoic metamorphic rocks and ancient granitoids. The age dates determined for rocks from the Molo-Sarychat pluton are similar to those identified for the igneous and metasomatic rocks of the large Kumtor gold deposit that is also associated with the “Nikolaev Line”.

Full Text

Restricted Access

About the authors

S. G. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: serguei07@mail.ru
Russian Federation, Moscow

S. G. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Russian Federation, Moscow

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

Y. A. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Kudrin V. S., Soloviev S. G., Stavinsky V. A., Kabardin L. L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Goldfarb R., Nielsen R. (Eds.). Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  4. Kröner A., Alexeiev D. V., Kovach V. P., Rojas-Agramonte Ya., Tretyakov A. A., Mikolaichuk A. V., Xie H. Q., Sobel E.R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu Complex, East Kyrgyzstan – the oldest continental basement fragment in the Tianshan orogenic belt // Journal of Asian Earth Sciences. 2017. V. 135. P. 122–135.
  5. Верхоланцев В. Н., Саргаев В. Н., Нурмагамбетов Х. Поиски и предварительная оценка молибденового оруденения в Моло-Сарычатском рудном поле / Отчет Геологической службы Киргизской ССР. Иныльчек, 1983. 238 с.
  6. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S. Y. GLITTER: Data reduction software for laser ablation ICP-MS // Sylvester P. (Ed.). Miner. Assoc. of Canada, Short Course Series, 2008. V. 40. P. 307–311.
  7. Hiess J., Condon D. J., McLean N., Noble S. R. 238U/235U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  8. Slama J., Kosler J., Condon D. J. et al. Plesovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  9. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center. 2003. P. 1–70.
  10. Black L. P., Kamo S. L., Allen C. M. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  11. Miller J. S., Matzel J. E., Miller C. F., Burgess S. D., Miller R. B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  12. Биске Ю. С. Палеозойская структура и история Южного Тянь-Шаня. СПб.: Изд-во СПГУ, 1996. 192 с.
  13. Konopelko D., Biske G., Seltmann R., Eklund O., Belyatsky B. Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan // Lithos. 2007. V. 97. P. 140–160.
  14. Соловьев С. Г. Металлогения шошонитового магматизма. М: Научный мир, 2014. Т. 1. 528 c. Т. 2. 472 с.
  15. Audétat A. Source and evolution of molybdenum in the porphyry Mo(–Nb) deposit at Cave Peak, Texas // Journal of Petrology. 2010. V. 51(8). P. 1739–1760.
  16. Pettke T., Oberli F., Heinrich C. A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions // Earth and Planetary Science Letters. 2010. V. 296(3–4). P. 267–277.
  17. Greaney A. T., Rudnick R. L., Gasching R. M., Whalen J. B., Luais B., Clemens J. D. Geochemistry of molybdenum in the continental crust // Geochim. Cosmochim. Acta. 2018. V. 238. P. 36–54.
  18. Blevin P. L., Chappell B. W. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia // Trans. Royal Soc. Edinburgh. 1996. V. 83. P. 305–316.
  19. Mao J., Konopelko D., Seltman R., Lehmann B., Chen W., Wang Y., Eklund O., Usubaliev T. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan // Econ. Geology. 2004. V. 99. P. 1771–1780.
  20. Ивлева Е. А., Пак Н. Т., Асилбеков К. А., Скрзипек Э., Хаузенбергер К., Орозбаев Р. Т. Золотое оруденение в связи с пермским магматизмом восточной части Южного и Срединного Тянь-Шаня (Кыргызстан) // Вестник КРСУ. 2022. Т. 22. № 4. С. 180–191.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the late Paleozoic metallogenic belt of Tien Shan. 1 — faults of different orders, 2 — late Paleozoic active continental margin (Middle Tien Shan), 3 — continental blocks of the basement of the Tarim and Karakum cratons, 4 — accretionary wedge terranes thrust onto the passive continental margin with possible cratonic basement, 5 — major (a) and minor (b) gold deposits, 6 — gold-copper-molybdenum-tungsten deposits, 7 — molybdenum-tungsten deposits, 8 — polymetal-tungsten deposits, 9 — tin-tungsten deposits, 10 — tin deposits, 11 — major (a) and minor (b) copper-molybdenum and molybdenum-gold-copper porphyry deposits, 12 — state borders.

Download (466KB)
3. Fig. 2. Geological schemes (A) of Eastern Kyrgyzstan, showing the position of the “V.A. Nikolaev line” and the structure of adjacent territories, and (B) of the Molo-Sarychatsky pluton area, according to [5], with modifications. A: 1 — Cenozoic deposits, 2 — Late Devonian-Early Carboniferous suture troughs (Sonkul, Turuk), 3 — terranes of the Southern Tien Shan, 4 — terranes of the Middle Tien Shan, 5 — terranes of the Northern Tien Shan, 6 — Paleoproterozoic (up to Archean?) gneisses, amphibolites, migmatites (blocks of the base of the Tarim Craton, separated by rift systems), 7 — Late Carboniferous-Early Permian intrusions of the shoshonite and high-potassium calc-alkaline series, 8 — individual Late Carboniferous-Permian granitoid intrusions of the Southern Tien Shan, 9 — faults, 10–12 — deposits and ore occurrences (10 - gold, 11 - tungsten, 12 - molybdenum). B: 1 — Upper Devonian-Lower Carboniferous dolomites, limestones, subordinate shales and sandstones, 2 — Upper Neoproterozoic to Camrian shales, conglomerates, tillites, 3 — Neoproterozoic shales, dolomites, limestones, 4 — faults, 5 — Ordovician-Silurian granitoids (Susamyr complex), 6 — Neoproterozoic (?) granitoids (Sarydzhaz complex), 7-9 — Late Carboniferous-Early Permian intrusions of shoshonite and high-potassium calc-alkaline series (7 — monzodiorites, including hybrid quartz monzodiorites, 8 — quartz monzonites, 9 — monzogranites), 10-14 — hydrothermal metasomatites and ore mineralization (10 — altered skarns with W-, Mo-, Cu-mineralization, 11 — area of ​​development of potassium metasomatites and phyllisites with Mo-, Cu-, W-mineralization, 12 — area of ​​development of phyllisites (quartz-sericite and quartz-carbonate-sericite metasomatites) with Pb-, Zn-, Bi-, Ag-, Au-mineralization, 13 — zones of intense quartz veining with Mo- and Cu-mineralization, 14 — zones of intense veining with Pb-, Zn-, Bi-, Ag-, Au-mineralization), 15 — sampling sites for isotope dating of zircons.

Download (638KB)
4. Fig. 3. Cathodoluminescence images of zircon crystals (circles indicate points where isotopic dating was carried out, point numbers correspond to those in Table 2) and concordia diagrams for zircons from intrusive rocks of the Mol-Sarychatsky pluton (thin solid ellipses are the results of single analyses, the dotted ellipse corresponds to the concordant value; errors of single analyses and calculated concordant ages are given at the 2σ level).

Download (516KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».