Combinatoric-variational approach to solving linear and nonlinear inverse problems in geophysics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Heterogeneous data obtained with different accuracy are considered in the framework of combinatory theory and variational principle. Discrete character of acquired data about physical fields and their sources imposes a series of limitations to the possibility of an adequate interpretation of the geophysical information. Combinatoric methods of discrete mathematics allow us to accurately formulate the main criteria of the data selection for the following approximation of the anomaly filed elements as well as for controlling the accuracy of solutions to linear and non-linear inverse problems.

Full Text

Restricted Access

About the authors

I. E. Stepanova

Shmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: tet@ifz.ru
Russian Federation, Moscow

I. I. Kolotov

Lomonosov Moscow State University

Email: tet@ifz.ru

физический факультет

Russian Federation, Moscow

References

  1. Stepanova I. E., Kolotov I. I. Solution of the Interpretation Tomography Problem in Geophysics under the Linear Integral Representation Method and Discrete Potential Theory // Doklady Earth Sciences. 2024. № 1. P. 1–9.
  2. Страхов В. Н., Степанова И. Э., Гричук Л. В. Теория дискретного гравитационного потенциала и ее использование в гравиметрии / В сб.: “Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей”, Труды международной конференции. Воронеж: Воронежский государственный университет, 1996. С. 49–71.
  3. Арсанукаев З. З. Вычисление пространственных элементов аномальных полей с использованием методов теории дискретных гравитационных полей // Физика Земли. 2004. № 11. С. 47–69.
  4. Страхов В. Н., Степанова И. Э. Метод S- аппроксимаций и его использование при решении задач гравиметрии (локальный вариант) // Физика Земли. 2002. № 2. С. 3–19.
  5. Страхов В. Н. Об эквивалентности в обратной задаче гравиметрии при переменной плотности масс // Доклады АН СССР. 1977. Т. 236. № 2. С. 329–331.
  6. Сачков В. Н. Комбинаторные методы дискретной математики. М.: Наука, 1977. 320 с.
  7. Айгнер М. Комбинаторная теория. М.: Мир, 1982. 556 с.
  8. Kolotov I. I., Lukyanenko D. V., Stepanova I. E., Yagola A. G. On the uniqueness of solutions to systems of linear algebraic equations resulting from the reduction of linear inverse problems of gravimetry and magnetometry: a local case // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 8. P. 1452–1465.
  9. Leonov A. S. Extraoptimal A Posteriori Estimates of the Solution Accuracy in the Ill-Posed Problems of the Continuation of Potential Geophysical Fields // Izvestiya, Physics of the Solid Earth. 2011. V. 47. № 6. P. 531–540.
  10. Самарский А. А. Николаев Е. С. Методы решения сеточных уравнений. М.: Наука, 1978. 592 с.
  11. MESSENGER Mission: Magnetometer (MAG) Instrument. URL: https://doi.org/10.29003/m1778.0514-7468.2020_42_4/485-501
  12. Степанова И. Э., Ягола А. Г., Лукьяненко Д. В., Колотов И. И. О построении аналитических моделей магнитного поля Меркурия по спутниковым данным // Физика Земли. 2023. № 6. С. 175–189.
  13. Раевский Д. Н., Степанова И. Э. О решении обратных задач гравиметрии с помощью модифицированного метода S-аппроксимаций // Физика Земли. 2015. № 2. С. 44–54.
  14. Toepfer S., Narita, Y., Glassmeier, K. H. et al. The Mie representation for Mercury’s magnetic field // Earth Planets Space . 2021. 73. 65. https://doi.org/10.1186/s40623-021-01386-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Gravitational field in model example No. 1. N = 10000.

Download (487KB)
3. Fig. 2. Gravitational field in model example No. 2. N = 10000.

Download (485KB)
4. Fig. 3. Mercury's magnetic field according to Messenger data.

Download (341KB)
5. Fig. 4. Distribution of magnetic field equivalent dipoles on the sphere R = 2400, constructed for the entire sample.

Download (435KB)
6. Fig. 5. Distribution of magnetic field equivalent dipoles on a sphere R = 2400, constructed using an analytically constructed magnetic field at orbital points located in the first three zones (according to the degree of distance from the planet’s surface): from 0 to 10 km; from 10 to 50 km and from 50 to 100 km.

Download (244KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».