Thermal state of the lithospheric mantle beneath the Birekte terrain: reconstructions based on the study of xenocrysts from different-aged kimberlites of the Yaku-tian kimberlite province
- Authors: Dymshits A.1, Oleynikov O.B.1, Oshchepkova M.G.2, Zemnukhov A.L.3, Oparin N.A.3
-
Affiliations:
- Institute of the Earth's crust SB RAS
- Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences
- АО «Алмазы Анабара»
- Issue: Vol 525, No 1 (2025)
- Section: GEOCHEMISTRY
- Submitted: 23.04.2025
- Accepted: 22.07.2025
- Published: 20.08.2025
- URL: https://journal-vniispk.ru/2686-7397/article/view/288605
- ID: 288605
Cite item
Full Text
Abstract
The study presents the results of an investigation of clinopyroxene xenocrysts sampled from the heavy fraction concentrate of kimberlites from the Ivushka pipe (Toluopka field) and Anomaly 75/90 (Molodo field), located within the Birekte terrane of the Siberian craton. Reconstructions of the thermal state of the lithospheric mantle indicate that during the Paleozoic kimberlite magmatism (Toluopka field), the thermal boundary between the lithosphere and asthenosphere was similar to that in the southern kimberlite fields and was approximately 230 km deep. Preliminary estimates for Anomaly 75/90 suggest that by the Mesozoic, the lithospheric mantle in this region had likely already thinned and undergone significant transformation, with the xenocrysts transported by kimberlite magma representing fragments of rocks containing multiple generations of clinopyroxenes.
Although the lithospheric thickness of the northern and southern fields was quite similar during the Devonian, the kimberlite magmas of the southern fields entrained a broader range of potentially diamondiferous rocks (depths of 130–230 km) during ascent compared to those of the northern fields (depths up to 170 km). These results may indirectly explain the significant difference in diamond potential between the Devonian kimberlites of the southern fields, located on Archean terranes, and the northern fields, which belong to the Proterozoic blocks of the Siberian craton.
Full Text

About the authors
Anna Dymshits
Institute of the Earth's crust SB RAS
Author for correspondence.
Email: a.dymshits@gmail.com
ORCID iD: 0000-0001-9608-3602
Russian Federation
Oleg Borisovich Oleynikov
Email: olei-oleg@yandex.ru
Mariya Gennadievna Oshchepkova
Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences
Email: oshchepkovamg28@mail.ru
Russian Federation, Yakutsk
Alexey Leonidovich Zemnukhov
АО «Алмазы Анабара»
Email: zemnukhoval@alanab.alrosa.ru
Nikolay Alexandrovich Oparin
Email: nik3256-1989@yandex.ru
References
- Griffin W.L., Ryan C.G., Kaminsky., F.V., O’Reilly S.Y., Natapov L.M., Win T.T., Kinny P.D., Ilupin I.P. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton // Tectonophysics. 1999. V. 310. № 1–4. P. 1–35.
- Shatsky V.S., Wang Q., Ragozin A.L., Su W., Ilyin A. A. Connection between tectonothermal events of the Yakutian kimberlite province and assembly of the Siberian craton, Precambrian Research. 2024. V. 405. 107379
- Donskaya T.V. Assembly of the Siberian Craton: constraints from Paleoproterozoic granitoids. Precambrian Research. 2020. V. 348. 105869.
- Зайцев А.И., Смелов А.П. Изотопная геохронология порол кимберлитовой формации Якутской провинции. Якутск: Офсет, 2010. 108 с.
- Государственная геологическая карта Российской Федерации. Масштаб 1:1 000000 (третье поколение). Лист R-51 – Джарджан. Объяснительная записка. Санкт-Петербург: Картографическая фабрика ВСЕГЕИ, 2013. 397 с.
- Ziberna L., Nimis P., Kuzmin D., Malkovets V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia // American Mineralogist. 2016. V. 101. № 10. P. 2222–2232.
- Nimis P., Preston R., Perritt S. H., Chinn I. L. Diamond's depth distribution systematics // Lithos. 2020. V. 376. P. 105729.
- Hasterok D., Chapman D.S. Heat production and geotherms for the continental lithosphere //Earth and Planetary Science Letters. 2011. V. 307. № 1–2. P. 59–70.
- Дымшиц А.М., Гладкочуб Е.А., Костровицкий С.И. Сложная история термального режима литосферной мантии Прианабарья: реконструкции на основе ксенокристаллов из кимберлитов // Геодинамика и тектонофизика. 2024. Т. 15. № 5:0778. https://doi.org/10.5800/GT-2024-15-5-0778.
- Тычков Н.С., Юдин Д.С., Николенко Е.И., Малыгина Е.В., Соболев Н.В. Мезозойская литосферная оболочка северо-востока Сибирского кратона (по включениям в кимберлитах) // Геология и геофизика. 2018. Т. 59. № 10. С. 1254–1270.
- Liu Z., Ionov D.A., Nimis P., Xu Y., He P., Golovin A.V. Thermal and compositional anomalies in a detailed xenolith-based lithospheric mantle profile of the Siberian craton and the origin of seismic midlithosphere discontinuities // Geology. 2022. V. 50. № 8. P. 891–896.
- Milaushkin M.V., Malkovets V.G., Gibsher A.A., Dymshits A.M., Yakovlev I.V., Pokhilenko N.P. The Thickness and Thermal State of the Lithospheric Mantle beneath the Yubileinaya Pipe (Alakit–Markha Kimberlite Field, Siberian Craton) // Doklady Earth Science. 2024. V. 519. P. 2236–2242.
- Дымшиц А.М., Муравьева Е.А., Тычков Н.С., Костровицкий С.И., Шарыгин И.С., Головин А.В., Олейников О.Б. Термальное состояние краевой части Сибирского кратона в мезозойскую эру кимберлитового магматизма Куойкского поля (Якутская алмазоносная провинция) // Литосфера. 2023. Т. 23. № 4. С. 515–530. https://doi.org/10.24930/1681-9004-2023-23-4-515-530
- Dymshits A.M., Sharygin I.S., Malkovets V.G., Yakovlev I.V., Gibsher A.A., Alifirova T.A., Vorobei S.S., Potapov S.V., Garanin V.K. Thermal State, Thickness, and Composition of the Lithospheric Mantle beneath the Upper Muna Kimberlite Field (Siberian Craton) Constrained by Clinopyroxene Xenocrysts and Comparison with Daldyn and Mirny Fields // Minerals. 2020. V. 10. № 6:549. https://doi.org/10.3390/min10060549
- Pokhilenko N.P., Afanasiev V.P., Agashev A.M., Pokhilenko L.N., Tychkov N.S. Lithospheric Mantle Composition and Structure Variations under the Siberian Platform Kimberlite Fields of Different Ages // Geodynamics & Tectonophysics. 2022. V. 13. № 4: 0666. https://doi.org/10.5800/GT-2022-13-4-0666
- Sudholz Z.J., Yaxley G.M., Jaques A.L., Brey G.P. Experimental recalibration of the Cr-in-clinopyroxene geobarometer: improved precision and reliability above 4.5 GPa // Contributions to Mineralogy and Petrology. 2021. V. 176. № 11. https://doi.org/10.1007/s00410-020-01768-z
- Похиленко Л.Н., Похиленко Н.П., Афанасьев В.П. Ксенолиты полимиктовых брекчий из кимберлитов якутской алмазоносной провинции // Геодинамика и тектонофизика. 2022. Т. 13. № 4:0660. https://doi.org/10.5800/GT-2022-13-4-0660
- Grégoire M., Rabinowicz M., Janse A.J.A. Mantle Mush Compaction: a Key to Understand the Mechanisms of Concentration of Kimberlite Melts and Initiation of Swarms of Kimberlite Dykes // Journal of Petrology. 2006. V. 47. № 3. P. 631–646.
- Sharygin I.S., Litasov K.D., Shatskiy A., Golovin A.V., Ohtani E., Pokhilenko N.P. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes // Gondwana Research. 2015. V. 28. P. 1391–1414.
- Похиленко Н.П., Соболев Н.В. Некоторые аспекты эволюции литосферной мантии северо-восточной части Сибирской платформы в связи с проблемой алмазоносности разновозрастных кимберлитов // Геология, закономерности размещения, методы прогнозирования и поисков месторождений алмазов. 1998. С. 65–68.
Supplementary files
