First estimates of greenhouse gas fluxes associated with groundwater sources in permafrost of central Yakutia
- Authors: Tananaev N.I.1,2, Krivenok L.A.3, Baishev N.E.3, Pavlova N.A.3
-
Affiliations:
- Северо-Восточный федеральный университет им. М.К. Аммосова
- Камчатский государственный университет им. Витуса Беринга
- Институт физики атмосферы им. А.М. Обручева РАН
- Issue: Vol 525, No 1 (2025)
- Section: ATMOSPHERIC AND HYDROSPHERIC PHYSICS
- Submitted: 25.07.2025
- Accepted: 28.07.2025
- Published: 20.08.2025
- URL: https://journal-vniispk.ru/2686-7397/article/view/303214
- ID: 303214
Cite item
Full Text
Abstract
Estimates of specific fluxes of methane and carbon dioxide into the atmosphere, associated with groundwater sources of continuous permafrost in central Yakutia were obtained for the first time. Average specific flux of methane from intensively emitting groundwater sources is 211±85 mgC·m-2·h-1, and carbon dioxide is 93±67 mgC·m-2·h-1, which significantly exceeds specific fluxes of these gases from many subaerial ecosystems. Dissolved methane concentration is also high and varies from 1.6 to 4.8 mg·L-1. Research results emphasize the importance of groundwater discharge areas as methane sources in continuous permafrost and indicate the need for their further study in order to more accurately account for its contribution to the overall greenhouse gas balance and establish the origin of greenhouse gases.
Keywords
Full Text

About the authors
Nikita I. Tananaev
Северо-Восточный федеральный университет им. М.К. Аммосова; Камчатский государственный университет им. Витуса Беринга
Author for correspondence.
Email: tanni@s-vfu.ru
ORCID iD: 0000-0003-2997-0169
SPIN-code: 1859-8831
Scopus Author ID: 12782200000
Ph.D. (Geography), head of the Climate and Northern ecosystems research laboratory
Russian FederationLudmila A. Krivenok
Институт физики атмосферы им. А.М. Обручева РАН
Email: krivenok@ifaran.ru
SPIN-code: 2062-8402
Russian Federation
Nyurgun E. Baishev
Email: nyurgunbaishev@mail.ru
Nadezhda A. Pavlova
Email: na-pavlova@mpi.ysn.ru
References
- Гарькуша Д.Н. Метан в подземных водах: образование, распределение, миграция и влияние добычи газа по технологии гидроразрыва пласта // Астраханский вестник экологического образования. 2021. №2(62). С. 72–88.
- Kulongoski J.T., McMahon P.B. Methane emissions from groundwater pumping in the USA // Nature Climate and Atmospheric Science. 2019. V. 2. Article No. 11.
- Barth-Naftilan E., Sohng J., Saiers J.E. Methane in groundwater before, during, and after hydraulic fracturing of the Marcellus Shale // Proceedings of the National Academy of Sciences (PNAS). 2018. V. 115, №27. P. 6970–6975.
- Olid C., Rodellas V., Rocher-Ros G., et al. Groundwater discharge as a driver of methane emissions from Arctic lakes // Nature Communications. 2022. V. 13. Article №3667.
- Lecher A.L., Kessler J., Sparrow K., et al. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites // Limnology and Oceanography. 2015. V. 61. № S1. P. S344–S355.
- Diak M., Böttcher M.E., Ehlert von Ahn C.M., et al. Permafrost and groundwater interaction: current state and future perspective // Frontiers in Earth Sciences. V. 11. Article №1254309.
- Kleber G.E., Hodson A.J., Magerl L., et al. Groundwater springs formed during glacial retreat are a large source of methane in the high Arctic // Nature Geoscience. 2023. V. 16. P. 597–604.
- Стрелецкая И.Д., Васильев А.А., Облогов Г.Е., и др. Метан в подземных льдах и мёрзлых отложениях на побережье и шельфе Карского моря // Лед и снег. 2018. Т. 58. №1. С. 65–77.
- Elder C.D., Thompson D.R., Thorpe A.K., et al. Characterizing methane emission hotspots from thawing permafrost // Global Biogeochemical Cycles. 2021. V. 35. № 12. Article № e2020GB006922.
- Heslop J.K., Walter Anthony K.M., Winkel M., et al. A synthesis of methane dynamics in thermokarst lake environments // Earth-Science Reviews. V. 210. Article № 103365.
- Diak M., Böttcher M.E., Ehlert von Ahn C.M. et al. Permafrost and groundwater interaction: current state and future perspective // Frontiers in Earth Science. 2023. V. 11. Article № 1254309.
- Sabrekov A.F., Terentieva I.E., McDermid G.J., et al. Methane in West Siberia terrestrial seeps: Origin, transport, and metabolic pathways of production // Global Change Biology. V. 29. № 18. P. 5334–5351.
- Павлова Н.А., Шепелев В.В., Галанин А.А., и др. Гидрохимия подземных вод надмерзлотно-межмерзлотного стока на участках их разгрузки (центральная Якутия) // Водные ресурсы. 2020. Т. 47. №4. С. 391–401.
- Ефимов А.И. Незамерзающий пресный источник Улахан-Тарын в Центральной Якутии // Исследования вечной мерзлоты в Якутской республике. М.: Изд-во АН СССР, 1952. Вып. 3. С. 60–105.
- Солдатова Е.А., Сидкина Е.С., Кирюхин Б.А., и др. Геохимические условия источника межмерзлотных вод Суллар: вторичное минералообразование и потоки метана. Известия ТПУ. Инжиниринг георесурсов. 2023. Т. 334. №10. С. 16–33.
- Tremblay A., Varfalvy L., Roehm C., et al. (eds.) Greenhouse gas emissions-fluxes and processes: hydroelectric reservoirs and natural environments. Berlin: Springer, 2005. 732 p.
- Bastviken D., Sundgren I., Natchimuthu S., et al. Technical Note: Cost-efficient approaches to measure carbon dioxide (CO2) fluxes and concentrations in terrestrial and aquatic environments using mini loggers // Biogeosciences. 2015. № 12. P. 3849–3859.
- Goldenfum J.A. (ed.) UNESCO/IHA GHG measurement guidelines for freshwater reservoirs. London: International Hydropower Association (IHA), 2010. 138 p. URL: https://www.hydropower.org/publications/ghg-measurement-guidelines-for-freshwater-reservoirs (09.09.24).
- Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chemical Geology. 1999. V. 161. P. 291–314.
- Takakai F., Desyatkin A., Larry Lopez C.M., et al. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia // Journal of Biogeochemical Research: Biogeosciences. 2008. V. 113(G2). G02002.
Supplementary files
