CONCENTRATIONS AND COMPOSITION OF HYDROCARBONS IN ICE AND SURFACE MICROLAYER OF THE BARENTS AND KARA SEAS IN JULY–AUGUST 2024

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents data on the concentrations and composition of hydrocarbons (aliphatic hydrocarbons – АНС and polycyclic aromatic hydrocarbons – РАН) in ice, surface microlayer (SML, up to 1000 μm thick) and surface waters in the Barents and Кага Seas (cruise 96 of the R/V Akademik Mstislav Keldysh, July–August 2024). Due to the water content of the ice, only a slight accumulation of hydrocarbons occurs compared to surface waters and compared to the SML. As before, the influence of autochthonous processes on the composition of alkanes in ice and SML is insignificant and differs from their composition in multi-year ice. Despite the different sources of these hydrocarbon classes, a dependence in the distribution of АНС and РАН in suspension in the SML was observed for all the samples collected (r = 0.67, p = 0.05).

About the authors

I. A. Nemirovskaya

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: nemir44@mail.ru
Moscow, Russia

A. V. Medvedeva

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

V. Yu. Kalgin

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

S. K. Gulev

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Academician of the RAS Moscow, Russia

N. V. Politova

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences

Moscow, Russia

References

  1. Julienne S., Notz D. Changing state of Arctic sea ice across all seasons // Environ. Res. Lett. 2018. № 13. 103001. https://doi.org/10.1088/1748-9326/aade56
  2. Notz D., Stroeve J. Arctic sea ice loss directly follows cumulative anthropogenic CO2 emissions // Science. 2016. № 354.
  3. Polyakov I.V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean // Science. 2017. № 356. P. 285–291. https://doi.org/10.1126/science.aai8204
  4. Bliss A.C., Anderson M.R. Snowmelt onset over Arctic sea ice from passive microwave satellite data: 1979–2012 // The Cryosphere. 2014. № 8. P. 2089–2100. https://doi.org/10.5194/tc-8-2089-2014
  5. Serreze M.C., Crawford A.D., Stroeve J., Barrett A.P., Woodgate R.A. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea // Journal of Geophysical Research. 2016. V. 121. № 10. P. 7308–7325. https://doi.org/10.1002/2016JC011977
  6. Stroeve J.C., Crawford A.D., Stanmerjohn S. Using timing of ice retreat to predict timing of fall freeze-up in the Arctic Geophys // Res. Lett. 2016. V. 43. № 12. P. 6332–6340.
  7. Reigstad M., Wexels Riser C., Oygarden S., Wassmann P., Rey F. Variation in hydrography, nutrients and suspended biomass in the marginal ice zone and the central Barents Sea // Journal of Marine Systems. 2002. V. 38. № 1. P. 9–29. http://dx.doi.org/10.1016/S0924-7963(02)00167-7
  8. Arthur M., Eldevik T., Smedsrud L.H., Skagseh O., Ingvaldsen R.B. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat // J. Clim. 2012. V. 25. № 13. P. 4736–4743. https://doi.org/10.1175/JCLI-D-11-00466.1
  9. Cincinelli A., Storini A.M., Checchini L., Martellini T., Del Bubba M., Lepri L. Enrichment of organic pollutants in the sea surface microlayer (SML) at Terra Nova Bay, Antarctica: Influence of SML on superficial snow composition // J. Environ. Monit. 2005. № 7. P. 1305–1312.
  10. Cunliffe M., Engel A., Frka S., Gasparovic B., Guitart C., Murrell J.C., Salter M., Stolle C., Upsill-Goddard R., Wurl O. Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface // Progress in Oceanography. 2013. V. 109. P. 104–116. https://doi.org/10.1016/j.pocean.2012.08.004
  11. Wurl O., Ekau W., Landing W.M., Zappa C.J. Sea surface microlayer in a changing ocean – A perspective // Elementa: Science of the Anthropocene. 2017. V. 5. № 31. https://doi.org/10.1525/elementa.228
  12. Nemirovskaya I.A., Khramtsova A.V. Hydrocarbons and suspended matter in the atmosphere-water boundary layer in the Barents and Kara seas // Mar. Poll. Bull. 2023. V. 191. 114892. https://doi.org/10.1016/j.marpollbul.2023
  13. Cunliffe M., Murrell J.C. The sea-surface microlayer is a gelatinous biofilm // The ISME Journal. 2009. № 3. P. 1001–1003. https://doi.org/10.1038/ismej.2009.69
  14. Sakellari A., Karavoltsos S., Moutafis I. et al. Occurrence and Distribution of Polycyclic Aromatic Hydrocarbons in the Marine Surface Microlayer of an Industrialized Coastal Area in the Eastern Mediterranean // Water. 2021. № 13. 3174. https://doi.org/10.3390/w13223174
  15. Gulev S.K. Global Climate Change and the Oceans // Studies on Russian Economic Development. 2023. V. 34. № 6. P. 738–745.
  16. Справочники и руководства. МОК/ВМО. Париж: Юнеско, 1984. № 13. 34 с.
  17. Немировская И.А. Нефть в океане (загрязнение и природные потоки). М.: Научный мир, 2013. 432 с.
  18. Отчет 96-го рейса НИС “Академик Мстислав Келдыш” 10-я экспедиция по программе “Европейская Арктика – 2024: геологическая летопись изменений среды и климата” М.: ИО РАН, 2024.
  19. Мельников И.А. Семенова Т.Н. Характеристика криобиологической фауны современного морского ледяного покрова центрального арктического бассейна // Проблемы Арктики и Антарктики. 2013. Т. 4. № 98. С. 14–25.
  20. Израэль Ю.А., Цыбань А.В. Антропогенная экология океана. М.: Флинта; Наука, 2009. 532 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).