NUMERICAL THERMODYNAMIC MODEL OF THE FLUID SYSTEM H2O–LiCl–CaCl2 IN THE TEMPERATURE RANGE FROM –77 TO +50°C

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A numerical thermodynamic model of the fluid system H2O–LiCl–CaCl2 is proposed for the temperature range from –77 to +50°C, employing newly derived temperature-dependent parameters for the interactions of Li, Ca, Cl ions and the corresponding solubility product constants within the Pitzer approach. Based on this model, a phase diagram was constructed that includes the calculated eutectic point E'' and peritectic points P1'', P2'', P3'', P4'', P5'' in the ternary system H2O–LiCl–CaCl2, as well as various phase boundaries of crystalline hydrates with their figurative points. The diagram also presents the calculated eutectic point E and peritectic point P for the binary H2O–CaCl2 system, and the eutectic point E' and peritectic points P1', P2', P3' for the binary H2O–LiCl system. The model-predicted eutectic and peritectic characteristics in the binary subsystems, along with the solubilities of solid phases (salt hydrates), show good agreement with experimental data.

About the authors

M. A. Misyura

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: max.misyura94@gmail.com
St. Petersburg, Russia

S. A. Bushmin

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Email: s.a.bushmin@ipgg.ru
St. Petersburg, Russia

E. V. Savva

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

St. Petersburg, Russia

References

  1. Balaram V., Santosh M., Satyanarayanan M. et al. Lithium: A review of applications, occurrence, exploration, extraction, recycling, analysis, and environmental impact // Geoscience Frontiers. 2024. V. 15. 101868.
  2. Bowell R.J., Lagos L., Hoyos C.R. Classification and Characteristics of Natural Lithium Resources // Elements. 2020. V. 16. P. 259–264.
  3. Alexeev S.V., Alexeeva L.P., Vakhromeev A.G. Brines of the Siberian platform (Russia): Geochemistry and processing prospects // Applied Geochemistry. 2020. V. 117. 104588.
  4. Мисюра М.А., Бушмин С.А., Александрович О.А. и др. Термодинамическая модель системы H2O–LiCl–NaCl для исследования флюидных включений: Расчет по уравнениям Питцера // Доклады РАН. Науки о Земле. 2024. T. 519. № 1. C. 52–60.
  5. Pitzer K.S. Ion interaction approach: Theory and data correlation. Activity coefficients in electrolyte solutions. Ed. K.S. Pitzer. CRC Press. 1991. P. 75–153.
  6. Monnin C., Dubois M., Papaiconomou N. et al. Thermodynamics of the H2O+LiCl system // Journal of Chemical Engineering Data. 2002. V. 47. P. 1331–1336.
  7. Holmes H.F., Mesmer R.E. Thermodynamic properties of aqueous solutions of the alkali metal chlorides to 250°C // Journal of Physical Chemistry. 1983. V. 87. P. 1242–1255.
  8. Toner J.D., Catling D.C. A low-temperature thermodynamic model for the Na–K–Ca–Mg–Cl system incorporating new experimental heat capacities in KCl, MgCl2 and CaCl2 solutions // J. Chem. Eng. Data. 2017. V. 62. № 3. P. 995–1010.
  9. Lassin A., Andre L. A revised description of the binary CaCl2–H2O chemical system up to solution-mineral equilibria and temperatures of 250°C using Pitzer equations. Extension to the multicomponent HCl–LiCl–NaCl–KCl–MgCl2–CaCl2–H2O system // J. Chem. Thermodynamics. 2023. V. 176. 106927.
  10. Gibbard H.F., Scatchard G. Liquid-Vapor Equilibrium of Aqueous Lithium Chloride, from 25° to 100°C and from 1.0 to 18.5 Molal, and Related Properties // J. Chemical and Engineering Data. 1973. V. 18. № 3. P. 293–298.
  11. Spencer R.J., Moller N., Weare J.H. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Mg–Cl–SO4–H2O system at temperatures below 25°C // Geochimica et Cosmochimica Acta. 1990. V. 54. P. 575–590.
  12. Moller N. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na–K–Ca–Cl–SO4–H2O system, to high temperature and concentration // Geochimica et Cosmochimica Acta. 1988. V. 52. P. 821–837.
  13. Wang X., Zhao K., Guo Yafei et al. Experimental Determination and Thermodynamic Model of Solid–Liquid Equilibria in the Ternary System (LiCl + CaCl2 + H2O) at 273.15 K // J. Chem. Eng. Data. 2019. V. 64. № 1. P. 249–254.
  14. Zeng D., Xu W., Voigt W. et al. Thermodynamic study of the system (LiCl + CaCl2 +H2O) // J. Chem. Thermodynamics. 2008. V. 40. P. 1157–1165.
  15. Шевчук В.Г., Вайсфельд М.И. Система LiCl–MgCl2–CaCl2–H2O при 25°C // Журнал неорганической химии. 1967. T. XII. № 4. C. 1064–1068.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).