Два типа сейсмической активности перед извержением вулкана августина 2006-го года на Аляске

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе анализируется изменение режимов вулканической сейсмичности на примере извержения вулкана Августина 2006-го года на Аляске. В период длинного вулканического роя, предшествовавшего извержению, удалось выделить два процесса с разными режимами сейсмичности.Первый можно связать с общими радиальными деформациями, вызванными повышением давления в подземной магматической камере, такой режим имеет высокое значение параметра наклона магнитудно-частотного распределения и низкую степень кластеризации. Второй же процесс, предположительно, можно связать с интрузией по дайке и локальным разрушением пород под давлением дайки. Такой процесс характеризуется значением параметра наклона магнитудно-частотного распределения, близким к 1, и высоким уровнем кластеризации перед наиболее сильными событиями, за которыми следует затишье.

Об авторах

Е. М. Греков

Институт теории прогноза землетрясений и математической геофизики Российской Академии наук; Московский государственный университет им. М.В. Ломоносова, физический факультет

Email: grekov.em16@physics.msu.ru
Москва, Россия; Москва, Россия

П. Н. Шебалин

Институт теории прогноза землетрясений и математической геофизики Российской Академии наук

Москва, Россия

В. Б. Смирнов

Московский государственный университет им. М.В. Ломоносова, физический факультет; Институт физики Земли Российской Академии наук

Москва, Россия; Москва, Россия

Список литературы

  1. Sornette D., Helmstetter A. Endogeneous Versus Exogeneous Shocks in Systems with Memory // Phys. A: Statistical Mechanics and its Applications. 2003. V. 318. P. 577‒591. https://doi.org/10.1016/S0378-4371(02)01371-7
  2. Traversa P., Grasso Jean-Robert. How is Volcano Seismicity Different from Tectonic Seismicity? // Bull. of the Seismological Society of America. 2010. V. 100. https://doi.org/10.1785/0120090214
  3. Buurman H., West M.E. Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano: Chapter 2 in the 2006 eruption of Augustine Volcano, Alaska // U.S. Geological Survey, Professional Paper 1769. 2010. P. 41–57. https://doi.org/10.3133/pp17692
  4. Jacobs K., Mcnutt S. Using seismic b-values to interpret seismicity rates and physical processes during the preeruptive earthquake swarm at Augustine Volcano 2005–2006 // US Geological Survey Professional Paper. 2010. P. 59–75.
  5. Power J.A., Friberg P.A., Haney M.M., Parker T., Stihler S.D., Dixon J.P. A unified catalog of earthquake hypocenters and magnitudes at volcanoes in Alaska—1989 to 2018 // U.S. Geological Survey Scientific Investigations Report. 2019. 2019–5037. 17 p. https://doi.org/10.3133/sir20195037. Available at: https://pubs.usgs.gov/publication/sir20195037
  6. Cervelli P.F., Fournier T., Freymueller J., Power J.A. Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska // Geophys. Res. Lett. 2006. V. 33. L18304. https://doi.org/10.1029/2006GL027219
  7. Zaliapin I., Gabrielov A., Keilis-Borok V.I., Wong H. Clustering analysis of seismicity and aftershock identification // Phys. Rev. Lett. 2008. V. 101. P. 018501. https://doi.org/10.1103/PhysRevLett.101.018501
  8. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2847–2864. https://doi.org/10.1002/jgrb.50179
  9. Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Physical Rev. E // Statistical, nonlinear, and soft matter physics. 2004. V. 69. Iss. 066106. https://doi.org/10.1103/PhysRevE.69.066106
  10. Gutenberg B., Richter C. Frequency of earthquakes in California // Nature. 1944. V. 156. P. 371–371.
  11. Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophys. J. International. 2020. V. 222. Iss. 2. P. 1264–1269. https://doi.org/10.1093/gji/ggaa252
  12. Маточкина С.Д., Шебалин П.Н., Смирнов В.Б., Пономарев А.В., Малютин П.А. Параметры группирования событий акустической эмиссии в лабораторных экспериментах по разрушению горных пород // Физика Земли. 2024. № 5. С. 85–96.
  13. Баранов С.В., Шебалин П.Н. Закономерности постсейсмических процессов и прогноз опасности сильных афтершоков. М.: РАН, 2019. 218 с.
  14. Mignan A., Woessner J. Estimating the magnitude of completeness for earthquake catalogs // Community Online Resource for Statistical Seismicity Analysis. 2012. https://doi.org/10.5078/corssa-00180805. Available at http://www.corssa.org
  15. Bender B. Maximum likelihood estimation of b values for magnitude grouped data // Bull. of the Seismological Society of America. 1983. V. 73. P. 831‒851.
  16. Grassberger P., Procaccia I. Characterization of Strange Attractors // Physical Review Letters. 1983. V. 50. No. 5. P. 346‒349.
  17. Frohlich C., Davis S.D. Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues // Geophys. J. Int. 1990. V. 100. P. 19‒32.
  18. Narteau C., Shebalin P., Holschneider M. Temporal limits of the power law aftershock decay rate // J. Geophys. Res. 2002. V. 107(B12). P. 2359. https://doi.org/10.1029/2002JB001868
  19. Соболев Г.А. Модель лавинно-неустойчивого трещинообразования – ЛНТ // Физика Земли. 2019. № 1. C. 166‒179. https://doi.org/10.31857/S0002-333720191166-179
  20. Helmstetter A., Sornette D. Foreshocks explained by cascades of triggered seismicity // J. Geophys. Res. 2003. V. 108(B10). P. 2457. https://doi.org/10.1029/2003JB002409

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».