PHOTOSENSITIVITY OF PbS COLLOIDAL QUANTUM DOTS BASED NANOSTRUCTURES WITH AN ENERGY BARRIER

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new architecture of photosensitive elements for the near (0.7–1.4 μm) and short-wavelength (1.4–3.0 μm) infrared regions of the spectrum based on hybrid nanostructures consisting of PbS colloidal quantum dots and functional layers of ZnO and AgNW silver nanowires is proposed. Small-sized (12 × 12 μm) photosensitive elements with an energy barrier at the contact between layers of n- and p-type CQDs have been studied. The current-voltage characteristics, spectral dependences of optical absorption and relative spectral photosensitivity of Si(λ)/Simax) barrier structures at room temperature have been studied. It is shown that the proposed architecture of barrier structures provides photosensitivity in a wide spectral range from 0.4 µm to 2.0 µm. An excess of the average value of the relative spectral sensitivity Si(λ)/Simax) about 1.5 times compared to those previously observed in the wavelength range of 0.9–1.85 μm for barrier nanostructures from PbS CQDs was found.

作者简介

V. Popov

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

V. Ivanov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

P. Arsenov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

A. Katsaba

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

E. Mirofyanchenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center

Email: popov.vs@mipt.ru
Russia, Moscow

A. Mirofyanchenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center

Email: popov.vs@mipt.ru
Russia, Moscow

V. Gak

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

N. Lavrentiev

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

S. Brichkin

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

A. Gadomska

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

I. Shuklov

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

D. Dymkin

Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny

V. Ponomarenko

Enterprise “RD&P Center “Orion”, Russian Federation State Research Center; Moscow Institute of Physics and Technology (National Research University)

Email: popov.vs@mipt.ru
Russia, Moscow; Russia, Moscow Region, Dolgoprudny

V. Razumov

Moscow Institute of Physics and Technology (National Research University); Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: popov.vs@mipt.ru
Russia, Moscow Region, Dolgoprudny; Russia, Moscow Region, Chernogolovka

参考

  1. Zandian M., Farris M., McLevige W. et al. Performance of Science Grade HgCdTe H4RG-15 Image Sensors // Proc. of SPIE. 2016. 9915, 99150F1. https://doi.org/10.1117/12.2233664
  2. Zhang J.-X., Wang W., Li Z.-B.et al. Development of a High Performance 1280 × 1024 InGaAs SWIR FPA Detector at Room Temperature // Front Phys. 2021. V. 9. 678192. https://doi.org/10.3389/fphy.2021.678192
  3. Thom R. High density infrared detector arrays // Patent US 4039833. 1977.
  4. Шуклов И.А., Разумов В.Ф. Коллоидные квантовые точки халькогенидов свинца для фотоэлектрических устройств // Успехи химии. 2020. Т. 89. № 3. С. 379–391. https://doi.org/10.1070/RCR4917
  5. Gregory C., Hilton A., Violette K. et al. Colloidal quantum dot sensor bandwidth and thermal stability: progress and outlook // Proc. of SPIE. 2022. 12107, 1210705. https://doi.org/10.1117/12.2618320
  6. Yuan Y., Xu J.-L., Zhang J.-Y. et al. Interface Engineering for High Photoresponse in PbS Quantum-Dot Short-Wavelength Infrared Photodiodes // IEEE Electron Device Letters. 2022.V. 43. P. 1275–1278. https://doi.org/10.1109/LED.2022.3183602
  7. Pejovic V., Georgitzikis E., Lee J. et al. Infrared Colloidal Quantum Dot Image Sensors // IEEE Transactions on Electron Device. 2021. V. 69. P. 2840–2850. https://doi.org/10.1109/TED.2021.3133191
  8. Попов В.С., Пономаренко В.П., Попов С.В. Фото- и наноэлектроника на основе двумерных 2D-материалов (обзор). Ч. III. Фотосенсоры на основе графена, графеноподобных и родственных моноатомных 2D-наноматериалов // Успехи прикладной физики. 2022. Т. 10. № 2. С. 144–169. https://doi.org/10.51368/2307-4469-2022-10-2-144-169
  9. Пономаренко В.П., Попов В.С., Попов С.В. Фотоэлектроника на основе квазинульмерных структур (обзор) // Успехи прикладной физики. 2021. Т. 9. № 1. С. 25–67. https://doi.org/10.51368/2307-4469-2021-9-1-25-67
  10. Brittman S., Colbert A.E., Brintlinger T.H. et al. Effects of a Lead Chloride Shell on Lead Sulfide Quantum Dots // J. Phys. Chem. Lett. 2019. V. 10. P. 1914–1918. https://doi.org/10.1021/acs.jpclett.9b00786
  11. Mayer R. Elemental Sulfur and its Reactions. Organic Chemistry of Sulfur / Ed. S. Oae. Springer-Verlag, 1977. P. 33–69.
  12. Beek W.J.E., Wienk M.M., Kemerink M. et al. Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells // J. Phys. Chem. B. 2005. V. 109. P. 9505–9516. https://doi.org/10.1021/jp050745x
  13. Langley D., Giusti G., Mayousse C. et al. Flexible transparent conductive materials based on silver nanowire networks: a review // Nanotechnology. 2013. V. 24. 452001 (20 p.) https://doi.org/10.1088/0957-4484/24/45/452001
  14. Kao K.C., Hwang W. (Electrical Transport in Solids. Oxford: Pergamon Press, 1981. 663 p.
  15. Reich K.V. Conductivity of quantum dot arrays // Physics-Uspekhi. 2020. V. 63. P. 994–1084. https://doi.org/10.3367/UFNe.2019.08.038649
  16. Klem E., Lewis J., Gregory C. et al. Room Temperature SWIR Sensing from Colloidal Quantum Dot Photodiode Arrays // Proc. of SPIE. 2013. 8704, 870436. https://doi.org/10.1117/12.2019521
  17. Klem E.J.D., Lewis J., Gregory C. et al. Low Cost SWIR Sensors: Advancing the Performance of ROIC- Integrated Collodial Quantum Dot Photodiode Arrays // Proc. of SPIE. 2014. 9070, 907039. https://doi.org/10.1117/12.2054215
  18. Klem E.J.D., Gregory C., Temple D. et al. PbS Colloidal Quantum Dot Photodiodes for Low-cost SWIR Sensing // Proc. of SPIE. 2015. 9451, 945104. https://doi.org/10.1117/12.2178532
  19. Hinds S., Klem E., Gregory C. et al. Extended SWIR High Performance and High Definition Colloidal Quantum Dot Imagers // Proc. of SPIE. 2020. 11407, 1140707. https://doi.org/10.1117/12.2559115

补充文件

附件文件
动作
1. JATS XML
2.

下载 (592KB)
3.

下载 (81KB)
4.

下载 (114KB)
5.

下载 (81KB)

版权所有 © В.С. Попов, В.П. Пономаренко, Д.В. Демкин, И.А. Шуклов, А.В. Гадомская, С.Б. Бричкин, Н.А. Лаврентьев, В.Ю. Гак, А.Е. Мирофянченко, Е.В. Мирофянченко, А.В. Кацаба, П.В. Арсенов, В.В. Иванов, В.Ф. Разумов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».