Distribution functions of gas of solitons of Korteweg – de Vries-type equation
- Авторлар: Pelinovsky E.N.1,2, Gurbatov S.N.3
-
Мекемелер:
- Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
- National Research University – Higher School of Economics
- National Research Nizhny Novgorod State University named after N.I. Lobachevsky
- Шығарылым: Том 520, № 1 (2025)
- Беттер: 44-50
- Бөлім: ФИЗИКА
- URL: https://journal-vniispk.ru/2686-7400/article/view/293931
- DOI: https://doi.org/10.31857/S2686740025010068
- EDN: https://elibrary.ru/GTYIVW
- ID: 293931
Дәйексөз келтіру
Аннотация
The statistical properties of a rarefied soliton gas are studied using solitary waves – solutions of the generalized Korteweg – de Vries equation as an example. It is shown that there is a critical density of a soliton gas regardless of the type of nonlinearity in the generalized Korteweg – de Vries equation, which is associated with the repulsion of solitons of the same polarity. The first two statistical moments of the wave field (the mean value and the dispersion), which are simultaneously invariants of the Korteweg – de Vries-type equation, are calculated. The densities of the distribution function of a rarefied soliton gas are calculated. A feature in these functions in the region of small field values due to the overlap of the exponential tails of the solitons is noted.
Негізгі сөздер
Авторлар туралы
E. Pelinovsky
Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; National Research University – Higher School of Economics
Хат алмасуға жауапты Автор.
Email: pelinovsky@ipfran.ru
Ресей, Nizhny Novgorod; Nizhny Novgorod
S. Gurbatov
National Research Nizhny Novgorod State University named after N.I. Lobachevsky
Email: gurb@rf.unn.ru
Ресей, Nizhny Novgorod
Әдебиет тізімі
- Захаров В.Е. Кинетическое уравнение для солитонов // ЖЭТФ. 1971. Т. 60. С. 993–1000.
- El G.A. Soliton gas in integrable dispersive hydrodynamics // J. Stat. Mech. 2021. V. 11. 114001.https://doi.org/10.1088/1742-5468/ac0f6d
- Bonnemain T., Doyon B., El G. Generalized hydrodynamics of the KdV soliton gas // J. Phys. A: Math. Theor. 2022. V. 55. 374004. https://doi.org/10.1088/1751-8121/ac8253
- Congy T., El G., Tovbis R.A. Dispersive hydrodynamics of soliton condensates for the Korteweg–de Vries Equation // J. Nonlinear Sci. 2023. V. 33. 104. https://doi.org/10.1007/s00332-023-09940-y
- Suret P., Randoux S., Gelash A., Agafontsev D., Doyon B., El G. Soliton gas: theory, numerics and experiments // Physical Review E. 2024, V. 109. № 6. 061001. https://doi.org/10.1103/PhysRevE.109.061001
- Redor I. Barthelemy E., Michallet H., Onorato M., Mordant N. Experimental evidence of a hydrodynamic soliton gas // Physical Review Letters. 2019, V. 122. № 21. 214502. https://doi.org/10.1103/PhysRevLett.122.214502
- Fache L., Damart H., Copie F., Bonnemain T., Congy T., Roberti G., Suret P., El G., Randoux S. Dissipation-driven emergence of a soliton condensate in a nonlinear electrical transmission line // arXiv:2407.02874v1 [nlin.PS]. 2024. https://doi.org/10.48550/arXiv.2407.02874
- Costa A., Osborne A.R., Resio D.T., Alessio S., Chiriv E., Saggese E., Bellomo K.., Long C. E. Soliton turbulence in shallow water ocean surface waves // Phys. Rev. Lett. 2014. V. 113. 108501. https://doi.org/10.1103/PhysRevLett.113.108501
- Osborne A.R., Resio D.T., Costa A., de Leon S.P., Chiriv E. Highly nonlinear wind waves in Currituck Sound: dense breather turbulence in random ocean waves // Ocean Dynamics. 2019. V. 31. P. 187–219. https://doi.org/10.1007/s10236-018-1232-y
- Shurgalina E.G., Pelinovsky E.N. Nonlinear dynamics of a soliton gas: modified Korteweg-de Vries equation framework // Physics Letters A. 2016, V. 380. P. 2049–2053. https://doi.org/10.1016/j.physleta.2016.04.023
- Gelash A., Agafontsev D.S. Strongly interacting soliton gas and formation of rogue waves // Phys. Rev. E. 2018. V. 98. 042210. https://doi.org/10.1103/PhysRevE.98.042210
- Dutykh D., Pelinovsky E. Numerical simulation of a solitonic gas in KdV and KdV-BBM equations // Physics Letters A 2014, V. 378, P. 3102–3110. https://doi.org/10.1016/j.physleta.2014.09.008
- Flamarion M.V., Pelinovsky E.N., Didenkulova E. Non-integrable soliton gas: the Schamel equation framework // Chaos, Solitons & Fractals. 2024. V. 180. 114495. https://doi.org/10.1016/j.chaos.2024.114495
- Schamel H., Chakrabarti N. On the evolution equations of nonlinearly permissible, coherent hole structures propagating persistently in collisionless plasmas // Ann. Phys. 2023. V. 535. 2300102. https://doi.org/10.1002/andp.202300102
- Могилевич Л.И., Блинков Ю. А., Попова Е.В., Попов В.С. Уединенные волны деформации в двух коаксиальных оболочках из материала с комбинированной нелинейностью, образующих стенки каналов кольцевого и круглого сечения, заполненных вязкой жидкостью // Известия вузов. Прикладная нелинейная динамика. 2024. Т. 32. № 4. С. 521–540. https://doi.org/10.18500/0869-6632-003115
- Гурбатов С.Н., Малахов А.Н., Саичев А.И. Нелинейные случайные волны в средах без дисперсии. М.: Наука, 1990. 216 c.
- Гурбатов С.Н., Руденко О.В., Саичев А.И. Волны и структуры в нелинейных средах без дисперсии. Приложения к нелинейной акустике. М.: Физматлит, 2008. 496 с.
- Шургалина Е.Г., Пелиновский Е.Н. Динамика ансамбля нерегулярных волн в прибрежной зоне. Нижний Новгород: НГТУ, 2015. 179 с.
- El G.A. Critical density of a soliton gas // Chaos. 2016. V. 26. 023105. https://doi.org/10.1063/1.4941372
- Руденко О.В., Чиркин А.С. О статистике шумовых разрывных волнах в нелинейных средах // ДАН СССР. 1975. Т. 225. № 3. С. 520–523.
- Руденко О.В. Взаимодействие интенсивных шумовых волн // Успехи физ наук. 1986. Т. 149. № 3. С. 413–447. https://doi.org/10.3367/UFNr.0149.198607c.0413
- Гурбатов С.Н., Пелиновский Е.Н. О вероятностных распределениях римановой волны и интеграла от нее // Доклады РАН. Физика, технические науки. 2020. T. 493. № 1. С. 18–22. https://doi.org/10.31857/S2686740020040070
Қосымша файлдар
