EXPANSIONS IN PAPKOVICH—FADLE FUNCTIONS IN THE PROBLEM FOR A HALF-STRIP WITH A CLAMPED END

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we construct an exact solution to the well-known boundary value problem of the theory of elasticity on the tension of a free half-strip with a rigidly clamped end. The solution is represented by series in Papkovich—Fadle eigenfunctions, the coefficients of which are determined in an explicit form. The solution is based on the Papkovich orthogonality relation and Lagrange expansions. The behavior of stresses near the corner points of the half-strip is investigated. A comparison of the exact solution and numerical one obtained on the basis of the finite element method is given.

作者简介

M. Kovalenko

Institute of Applied Mechanics, Russian Academy of Sciences

Email: kov08@inbox.ru
Moscow, Russia

A. Kerzhaev

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences

Moscow, Russia

I. Menshova

Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences; Bauman Moscow State Technical University

Moscow, Russia

D. Vlasov

Moscow State University of Civil Engineering

Moscow, Russia

参考

  1. Bogy D.B. Solution of the plane end problem for a semi-infinite elastic strip // Z. Angew. Math. Phys. 1975. V. 26. P. 749–769.
  2. Razvitie teorii kontaktnykh zadach v SSSR / Pod red. L.A. Galina. M.: Nauka, 1976. 493 s.
  3. Menshykov O., Reut O., Reut V., Vaysfeld N., Zhuravlova Z. The plane mixed problem for an elastic semistrip under different load types at its short edge // Intern. J. Mech. Sci. 2018. V. 144. P. 526–530.
  4. Papkovich P.F. Ob odnoi forme resheniia ploskoi zadachi teorii uprugosti dlia priamougol'noi polosy // DAN SSSR. 1940. T. 27. № 4. S. 335–339.
  5. Kovalenko M.D., Menshova I.V., Shuliakovskaya T.D. Razlozheniia po funktsiiam Fadlia—Papkovicha. Primery reshenii v polupolose // Izv. RAN. MTT. 2013. № 5. S. 121–144.
  6. Kovalenko M.D., Shuliakovskaya T.D. Razlozheniia po funktsiiam Fadlia—Papkovicha v polose. Osnovy teorii // Izv. RAN. MTT. 2011. № 5. S. 78–98.
  7. Levin B.Ia. Raspredelenie kornei tselykh funktsii. M.: GITTL, 1956. 632 s.
  8. Timoshenko S.P., Gud'er Dzh. Teoriia uprugosti. M.: Nauka, 1979. 560 s.
  9. Vlasov V.V. Metod nachal'nykh funktsii v zadachakh teorii uprugosti i stroitel'noi mekhaniki. M.: Stroiizdat, 1975. 224 s.
  10. Kev V., Teodoresku P. Vvedenie v teoriiu obobshchennykh funktsii s prilozheniiami v tekhnike. M.: Mir, 1978. 518 s.
  11. Markushevich A.I. Tselye funktsii. M.: Nauka, 1975. 120 s.
  12. Prudnikov A.P., Brychkov Iu.A., Marichev O.I. Integraly i riady. T. 1. Elementarnye funktsii. M.: Fizmatlit, 2002. 632 s.
  13. Benthem J.P. A Laplace transform method for the solution of semi-infinite and finite strip problems in stress analysis // Q. J. Mech. Appl. Math. 1963. V. 16. № 4. P. 413–429.
  14. Gupta G.D. An integral equation approach to the semi-infinite strip problem // J. Appl. Mech. 1973. V. 40. № 4. P. 948–954.
  15. Ufliand Ia.S. Integral'nye preobrazovaniia v zadachakh teorii uprugosti. L.: Nauka, 1967. 402 s.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).