РАЗЛОЖЕНИЯ ПО ФУНКЦИЯМ ПАПКОВИЧА–ФАДЛЯ В ЗАДАЧЕ ДЛЯ ПОЛУПОЛОСЫ С ЗАЩЕМЛЕННЫМ ТОРЦОМ
- Авторы: Коваленко М.Д.1, Кержаев А.П.2, Меньшова И.В.2,3, Власов Д.А.4
-
Учреждения:
- Институт прикладной механики Российской академии наук
- Институт теории прогноза землетрясений и математической геофизики Российской академии наук
- Московский государственный технический университет имени Н.Э. Баумана
- Московский государственный строительный университет
- Выпуск: Том 524, № 1 (2025)
- Страницы: 63-68
- Раздел: МЕХАНИКА
- URL: https://journal-vniispk.ru/2686-7400/article/view/356214
- DOI: https://doi.org/10.7868/S3034508125050102
- ID: 356214
Цитировать
Аннотация
Об авторах
М. Д. Коваленко
Институт прикладной механики Российской академии наук
Email: kov08@inbox.ru
Москва, Россия
А. П. Кержаев
Институт теории прогноза землетрясений и математической геофизики Российской академии наукМосква, Россия
И. В. Меньшова
Институт теории прогноза землетрясений и математической геофизики Российской академии наук; Московский государственный технический университет имени Н.Э. БауманаМосква, Россия
Д. А. Власов
Московский государственный строительный университетМосква, Россия
Список литературы
- Bogy D.B. Solution of the plane end problem for a semi-infinite elastic strip // Z. Angew. Math. Phys. 1975. V. 26. P. 749–769.
- Razvitie teorii kontaktnykh zadach v SSSR / Pod red. L.A. Galina. M.: Nauka, 1976. 493 s.
- Menshykov O., Reut O., Reut V., Vaysfeld N., Zhuravlova Z. The plane mixed problem for an elastic semistrip under different load types at its short edge // Intern. J. Mech. Sci. 2018. V. 144. P. 526–530.
- Papkovich P.F. Ob odnoi forme resheniia ploskoi zadachi teorii uprugosti dlia priamougol'noi polosy // DAN SSSR. 1940. T. 27. № 4. S. 335–339.
- Kovalenko M.D., Menshova I.V., Shuliakovskaya T.D. Razlozheniia po funktsiiam Fadlia—Papkovicha. Primery reshenii v polupolose // Izv. RAN. MTT. 2013. № 5. S. 121–144.
- Kovalenko M.D., Shuliakovskaya T.D. Razlozheniia po funktsiiam Fadlia—Papkovicha v polose. Osnovy teorii // Izv. RAN. MTT. 2011. № 5. S. 78–98.
- Levin B.Ia. Raspredelenie kornei tselykh funktsii. M.: GITTL, 1956. 632 s.
- Timoshenko S.P., Gud'er Dzh. Teoriia uprugosti. M.: Nauka, 1979. 560 s.
- Vlasov V.V. Metod nachal'nykh funktsii v zadachakh teorii uprugosti i stroitel'noi mekhaniki. M.: Stroiizdat, 1975. 224 s.
- Kev V., Teodoresku P. Vvedenie v teoriiu obobshchennykh funktsii s prilozheniiami v tekhnike. M.: Mir, 1978. 518 s.
- Markushevich A.I. Tselye funktsii. M.: Nauka, 1975. 120 s.
- Prudnikov A.P., Brychkov Iu.A., Marichev O.I. Integraly i riady. T. 1. Elementarnye funktsii. M.: Fizmatlit, 2002. 632 s.
- Benthem J.P. A Laplace transform method for the solution of semi-infinite and finite strip problems in stress analysis // Q. J. Mech. Appl. Math. 1963. V. 16. № 4. P. 413–429.
- Gupta G.D. An integral equation approach to the semi-infinite strip problem // J. Appl. Mech. 1973. V. 40. № 4. P. 948–954.
- Ufliand Ia.S. Integral'nye preobrazovaniia v zadachakh teorii uprugosti. L.: Nauka, 1967. 402 s.
Дополнительные файлы


