TRANSITION FROM STRATIFIED TO ANNULAR FLOW IN A FLAT MINICHANNEL AT HIGH LIQUID AND GAS VELOCITIES

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This study is devoted to the experimental investigation of the transition from stratified to annular flow in a flat minichannel at various gas and liquid velocities, including condition of turbulent flow. Water and air were used as the components of the two-phase flow. It was found that the transition to annular flow at high liquid and gas flow rates occurred not only due to side wall wetting, as reported in the literature, but also due to drop entrainment. Moreover, when the influence of side wall wettability was eliminated by placing fibers into recesses near the side walls of the minichannel, the transition to annular flow at high liquid and gas flow rates occurred solely due to drop entrainment from the wavy gas-liquid interface, which, to the best of the authors' knowledge, was obtained for the first time.

作者简介

A. Mungalov

Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

Email: a.mungalov@alumni.nsu.ru
Novosibirsk, Russia

D. Konkin

Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. Karchevsky

Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

O. Kabov

Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

参考

  1. Kabov O.A., Lyulin Yu.V., Marchuk I.V., Zaitsev D.V. Locally heated shear-driven liquid films in microchannels and minichannels // Intern. J. Heat Fluid Flow. 2007. V. 28. P. 103–112.
  2. Kabov O.A., Zaitsev D.V., Cheverda V.V., Bar-Cohen A. Evaporation and flow dynamics of thin, shear-driven liquid films // Exp. Therm. Fluid Sci. 2011. V. 35. Iss. 5. P. 825–831.
  3. Kabov O., Zaitsev D., Tkachenko E. Interfacial thermal fluid phenomena in shear driven thin liquid films // Intern. Heat Transf. Conf. 2018. V. 16. P. 1061–1067.
  4. Kabov O.A. Cooling of high heat flux electronic components by intensively evaporating thin liquid film with dynamic micro-breaks // Mater. ob"edinennogo seminara Uchenogo soveta IT SO RAN / Ed. by ac. D.M. Markovich, ac. S.V. Alekseenko. 2024. P. 9–68.
  5. Karchevsky A.L., Marchuk I.V., Kabov O.A. Calculation of the heat flux near the liquid-gas-solid contact line // Appl. Math. Model. 2016. V. 40. P. 1029–1037.
  6. Kabov O.A., Zaitsev D.V., Kirichenko D.P., Ajaev V.S. Interaction of levitating microdroplets with moist air flow in the contact line region // Nanoscale Microscale Thermophys. Eng. 2017. V. 21. Iss. 2. P. 60–69.
  7. Ajaev V.S., Kabov O.A. Heat and mass transfer near contact lines on heated surfaces // Intern. J. Heat Mass Transfer. 2017. V. 108. P. 918–932.
  8. Rebrov E.V. Two-phase flow regimes in microchannels // Theor. Found. Chem. 2010. V. 44. P. 355–367.
  9. Chinnov E.A., Ron'shin F.V., Kabov O.A. Two-phase flow regimes in micro- and minichannels // Teplofizika i aeromekhanika. 2015. V. 22. № 3. P. 275–297.
  10. Verma R.K., Ghosh S. Two-phase flow in miniature geometries: comparison of gas-liquid and liquid-liquid flows // ChemBioEng Rev. 2019. V. 6. Iss. 1. P. 5–16.
  11. Cheng L., Xia G. Flow patterns and flow pattern maps for adiabatic and diabatic gas liquid two phase flow in microchannels: fundamentals, mechanisms and applications // Exp. Therm. Fluid Sci. 2023. V. 148. 110988.
  12. Sikora M., Anweiler S., Meyer J. Comprehensive analysis of two-phase liquid-gas flow structures in varied channel geometries and thermal environments // Intern. J. Heat Mass Transfer. 2024. V. 228. 125665.
  13. Ullmann A., Brauner N. The prediction of flow pattern maps in minichannels // Multiph. Sci. Technol. 2007. V. 19. P. 49–73.
  14. Taitel Y., Dukler A. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow // AIChE J. 1976. V. 22. P. 47–55.
  15. Brauner N., Maron D. Analysis of stratified/non-stratified transitional boundaries in horizontal gas-liquid flows // Chem. Eng. Sci. 1991. V. 46. P. 1849–1859.
  16. Brauner N., Maron D. The role of interfacial shear modelling in predicting the stability of stratified two-phase flow // Chem. Eng. Sci. 1993. V. 48. P. 2867–2879.
  17. Cherdantsev A.V., Zdornikov S.A., Cherdantsev M.V., Isaenkov S.V., Markovich D.M. Stratified-to-annular gas-liquid flow patterns transition in a horizontal pipe // Exp. Therm. Fluid Sci. 2022. V. 132. 110552.
  18. Chinnov E.A., Ron'shin F.V., Kabov O.A. Two-phase flow patterns in short horizontal rectangular microchannels // Intern. J. Multiph. Flow. 2016. V. 80. P. 57–68.
  19. Ronshin F.V., Dementyev Y.A., Chinnov E.A. Experimental study of two-phase flow regimes in slit microchannels // Microfluid. Nanofluidics. 2023. V. 27. P. 1–16.
  20. Zaitsev D., Kochkin D., Kabov O. Dynamics of liquid film rupture under local heating // Intern. J. Heat Mass Transf. 2022. V. 184. 122376.
  21. Wong H., Radke C.J., Morris S. The motion of long bubbles in polygonal capillaries. Part 1. Thin films // J. Fluid Mech. 1995. V. 292. P. 71–94.
  22. Fang C., David M., Wang F., Goodson K. Influence of film thickness and cross-sectional geometry on hydrophilic microchannel condensation // Intern. J. Multiph. Flow. 2010. V. 36. Iss. 8. P. 608–619.
  23. Ito D., Damsohn M., Prasser H., Aritomi M. Dynamic film thickness between bubbles and wall in a narrow channel // Exp. Fluids. 2011. V. 51. Iss. 3. P. 821–833.
  24. Ito D., Papadopoulos P., Prasser H. Liquid film dynamics of two-phase annular flow in square and tight lattice subchannels // Nucl. Eng. Des. 2016. V. 300. P. 467–474.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».