Experimental modeling of cavitation effects in an underwater explosive eruption

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As an experimental model of a volcanic eruption, the Electro-Magnetic HST method was used, the scheme of which includes optically transparent cuvettes with a metal bottom, a layer of distilled water and a battery of high-voltage capacitors. Under the bottom there is a “charge” in the form of a flat spiral, onto which, when closed by a high-voltage pulse of a break in the circuit, a battery of capacitors is discharged, forming a shock wave and a quasi-empty rupture, the growth of which is accompanied by a continuous decrease in pressure. The experiments recorded a detailed process of focusing a quasi-empty cavity with a smooth increase in pressure both inside it and in the shell bubbles, and the rapid transition of the latter into a dust cloud. The formation of SW ends in the form of a clear annular boundary on the surface of the cuvette bottom. The formation of toroidal bubble clusters, their separation from the bottom of the layer and a breakthrough into free space.

About the authors

V. K Kedrinskiy

Lavrentiev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: kedr@hydro.nsc.ru
Novosibirsk, Russian Federation

References

  1. Eichelberger J., Gordeev E., Koyaguchi T. A Russian–Japan–US partnership to understand explosive volcanism // Geolog. 2006. Jun. 22. P. 1–4. www.uaf.edu/geology/PIRE.pdf.
  2. Glass I.I., Heuckroth L.E. Hydrodynamic shock tube // Phys. Fluids. 1963. V. 6. No. 4, р. 543–549.
  3. Dobran F. Nonequilibrium flow in volcanic conduits and application to the eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD79 // J. Volcanol. Geotherm. Res. 1992. V. 49. N3. P. 285–311.
  4. Berngardt A., Bichenkov E., Kedrinskii V., Pal’chikov E. Optic and x-ray investigation of water fracture in rarefaction wave at later stages // Proc. IUTAM Symp. On Optical Methоds in the Dynamics of Fluids and Solids. Prague. 1987. P. 137–142.
  5. Bernhardt A.R., Kedrinskiy V.K., Palchikov E.I. Evolution of the internal structure of the liquid fracture zone under pulsed loading // AMTP 1995. Vol. 32, р. 99–105
  6. Gonnermann H.M., Manga M. Explosive volcanism may not bean inevitable consequence of magma fragmentation // Nature. 2003. V. 426. P. 432–435.
  7. Kedrinsky V.K., Davydov M.N., Chernov A.A., Takayama K. Initial stage of explosive volcanic eruption: dynamics of magma state in discharge waves // Dokl. RAN. 2006. Vol. 407, No. 2, р. 190–193.
  8. Bolshakova E.S., Kedrinsky V.K. Dynamics of rupture in a cavitating liquid layer under shock wave loading. // 2017. Vol. 58, No. 5, р. 93–101.
  9. Barmin A., Melnic O., Sparks S. Periodic behavio in lava dome eruptions // Earth Planet. Sci. Lett. 2002. V. 199. P. 173–184.
  10. Costa A., Melnic O., Sparks R.S., Voight B. Control of magma flow in dykes on cyclic lava dome extrusion // Geophys. Res. Lett. 2007. V. 34. LO2303. doi: 10.1029/2006GL027466
  11. Gonnermann H.M., Manga M. The fluid mechanics insids a volcano // Annu. Rev. Fluid Mech. 2007. V. 39. P. 321–356.
  12. Woods A.W. The dynamics of explosive volcanic eruptions // Rev. Geophys. 1995. V. 33. N4. P. 495–530.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).