NANOSCALE STRANTRONIC MAGNETOELETRIC CELL FOR NEUROMORPHIC SYSTEMS
- Авторлар: Krutyansky L.M.1, Preobrazhensky V.L.1
-
Мекемелер:
- Prokhorov General Physics Institute of the Russian Academy of Sciences
- Шығарылым: Том 524, № 1 (2025)
- Беттер: 15-22
- Бөлім: ФИЗИКА
- URL: https://journal-vniispk.ru/2686-7400/article/view/356207
- DOI: https://doi.org/10.7868/S3034508125050034
- ID: 356207
Дәйексөз келтіру
Аннотация
Авторлар туралы
L. Krutyansky
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: leonid.krut@kapella.gpi.ru
Moscow, Russia
V. Preobrazhensky
Prokhorov General Physics Institute of the Russian Academy of Sciences
Email: vlp@yandex.ru
Moscow, Russia
Әдебиет тізімі
- Uhrig R.E. Introduction to artificial neural networks // Proc. IECON '95–21st Annual Conference on IEEE Industrial Electronics. 1995. № 1. P. 33–37. https://doi.org/10.1109/IECON.1995.483329
- Montesinos López O.A., Montesinos López A., Crossa J. Fundamentals of Artificial Neural Networks and Deep Learning // Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham: Springer, 2022. P. 379–425. https://doi.org/10.1007/978-3-030-89010-0_10
- Depertioglu O., Kose U. An educational tool for artificial neural networks // Comput. Electr. Eng. 2011. V. 37. Iss. 3. P. 392–402. https://doi.org/10.1016/j.compeleceng.2011.03.010
- Clevert D-A., Unterthiner T., Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUs). ICLR2016. arXiv:1511.07289v5 [cs.LG]. https://doi.org/10.48550/arXiv.1511.07289
- Elfwing S., Uchibe E., Doya K. Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning. arXiv:1702.03118v3 [cs.LG]. 2 Nov., 2017.
- Kimhi M., Kashani I., Mendelson A., Baskin C. Hysteresis Activation Function for Efficient Inference. 4th NeurIPS Efficient Natural Language and Speech Processing Workshop (ENLSP-IV 2024). arXiv:2411.10573v2 [cs.LG]. 11 Mar., 2025.
- Ponulak F., Kasinski A. Introduction to spiking neural networks: Information processing, learning and applications Acta Neurobiol. Exp. 2011. V. 71. P. 409–433. https://doi.org/10.55782/ane-2011-1862
- Grüning A., Bohie S. M. Spiking Neural Networks: Principles and Challenges. European Symposium on Artificial Neural Networks (ESANN). Computational Intelligence and Machine Learning. Bruges: ESANN, 2014.
- Pfeiffer M., Pfeil T. Deep Learning With Spiking Neurons: Opportunities and Challenges. Front. Neurosci., Sec. Neuromorphic Engineering. 2018. V. 12. 774. https://doi.org/10.3389/fnins.2018.00774
- Hendy H., Merkel C. Review of spike-based neuromorphic computing for brain-inspired vision: Biology, algorithms, and hardware // J. Electronic Imaging. 2022. V. 3 (1). 010901. https://doi.org/10.1117/1.JEI.31.1.010901
- Tuma T., Pantazi A., Le Gallo M., Sebastian A., Eleftheriou E. Stochastic phase-change neurons // Nat. Nanotechnol. 2016. V. 11. P. 693–699. https://doi.org/10.1038/NNANO.2016.70
- Liu H., Wu T., Yan X., Wu J., Wang N., Du Z., Yang H., Chen B., Zhang Z., Liu F., Wu W., Guo J., Wang H. A Tantalum Disulfide Charge-Density-Wave Stochastic Artificial Neuron for Emulating Neural Statistical Properties // Nano Lett. 2021. V. 21. P. 3465–3472. https://doi.org/10.1021/acs.nanolett.1c00108
- Wang J.J., Hu S.G., Zhan X.T., Yu Q., Liu Z., Chen T.P., Yin Y., Hosaka S., Liu Y. Handwritten-Digit Recognition by Hybrid Convolutional Neural Network based on HfO2 Memristive Spiking-Neuron // Sci. Rep. 2018. V. 8. 12546. https://doi.org/10.1038/s41598-018-30768-0
- Chakraborty I., Saha G., Sengupta A., Roy K. Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons // Sci. Rep. 2018. V. 8. 12980. https://doi.org/10.1038/s41598-018-31365-x
- Li Z., Geng X., Wang J., Zhuge F. Emerging Artificial Neuron Devices for Probabilistic Computing // Front. Neurosci. 2021. V. 15. 717947. https://doi.org/10.3389/fnins.2021.717947
- Burkitt A.N. A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input // Biol Cybern. 2006. V. 95. P. 1–19. https://doi.org/10.1007/s00422-006-0068-6
- Stoltzer P., Tranchant J., Corraze B., Janod E., Besland M-P., Tesler F., Rozenberg M., Cario L. A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator // Adv. Funct. Mater. 2017. 1604740. https://doi.org/10.1002/adfm.201604740
- Крутянский Л.М., Преображенский В.Л. Функциональный преобразователь сигналов на основе композитного мультиферроика // Письма в ЖТФ. 2023. Т. 49. Вып. 15. С. 33–38. https://doi.org/10.21883/PJTF.2023.15.55862.19594
- Крутянский Л.М., Преображенский В.Л. Функциональное преобразование случайных сигналов в композитной магнитоэлектрической ячейке // Письма в ЖТФ. 2025. Т. 51. В печати.
- Tiercelin N., Preobrazhensky V., Pernod P., Ostaschenko A. Enhanced magnetoelectric effect in nanostructured magnetostrictive thin film resonant actuator with field induced spin reorientation transition // Appl. Phys. Lett. 2008. V. 92. 062904. https://doi.org/10.1063/1.2841656
- Dusch Y., Tiercelin N., Klimov A., Giordano S., Preobrazhensky V., Pernod P. Stress-mediated magnetoelectric memory effect with uni-axial TbCo2/FeCo multilayer on 011-cut PMN-PT ferroelectric relaxor // J. Appl. Phys. 2013. V. 113. 17C719. https://doi.org/10.1063/1.4795440
- Tiercelin N., Preobrazhensky V., Mortet V., Talbi A., Soltani A., Haenen K., Pernod P. Thin film magnetoelectric composites near spin reorientation transition // J. Magn. & Magn. Mat. 2009. V. 321. P. 1803–1807. https://doi.org/10.1016/j.jmmm.2009.02.026
- Wang F., Luo L., Zhou D., Zhao X., Luo H. Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71 Pb (Mg1/3Nb2/3) O3–0.29 Pb TiO3 single crystal // Appl. Phys. Lett. 2007. V. 90. 212903. https://doi.org/10.1063/1.2743393
- Borders W.A., Pervaiz A.Z., Fukami S., Camsari K.Y., Ohno H., Datta S. Integer factorization using stochastic magnetic tunnel junctions // Nature. 2019. V. 573. P. 390–393. https://doi.org/10.1038/s41586-019-1557-9
- Pervaiz A.Z., Ghantasala L.A., Camsari K.Y., Datta S. Hardware emulation of stochastic p-bits for invertible logic // Scientific Reports. 2017. V. 7. 10994 https://doi.org/10.1038/s41598-017-11011-8
Қосымша файлдар

